Re-evaluation of Fermi’s theory of beta-decay


  • Wladimir Guglinski Escola de Engenharia da Universidade Federal de Minas Gerais, Av. Presidente Antonio Carlos, 6627, Pampulha, Belo Horizonte-MG,  Brazil
Keywords: Fermi’s beta-decay‎, Neutron quark model, Neutron distribution, Jefferson Lab (JLAB)


c.php?d=5&id=121081&s=16  Views 

Another published paper of the author proposes that proton and neutron radii have contraction ‎inside the atomic nuclei, generating a discrepancy of 8s between the neutron lifetime measured in ‎beam and bottle experiments. According to the present theory, the neutron radius in beam ‎experiments dilates from 0.26fm up to 0.87fm during the initial 8s, after which begins the process of ‎decay. The present paper proposes a new neutron model with quark structure d(u-e-u), with an ‎electron sandwiched between two up quarks. It reproduces very well all neutron properties, as for ‎instance the radial charge distribution, impossible to be reproduced considering the current quark ‎model ddu. So, the radial charge distribution of neutrons (obtained from beam experiments, if ‎measured in the first initial 8 seconds of their lifetime) has to exhibit a curve a little different of that ‎measured in 2007 in the Jefferson Lab. Here is proposed to JLab to repeat the experiment under ‎such new condition. 


Download data is not yet available.

Author Biography

Wladimir Guglinski, Escola de Engenharia da Universidade Federal de Minas Gerais, Av. Presidente Antonio Carlos, 6627, Pampulha, Belo Horizonte-MG,  Brazil






Aartsen, M., Abraham, K., Ackermann, M., Adams, J., ‎Aguilar, J., Ahlers, M., . Anderson, T. (2016). Searches for ‎sterile neutrinos with the IceCube detector. Physical review ‎letters, 117(7), 071801. ‎

Abada, A., Arcadi, G., Domcke, V., & Lucente, M. (2015). ‎Lepton number violation as a key to low-scale ‎leptogenesis. Journal of Cosmology and Astroparticle ‎Physics, 2015(11), 041. ‎

Adamson, P. (2013). Neutrino Velocity: Results and ‎prospects of experiments at beamlines other than CNGS. ‎Nuclear Physics B-Proceedings Supplements, 235, 296-‎‎300. ‎

Advisory‎, N. S. (2007). The frontiers of nuclear science, a ‎long range plan. arXiv preprint arXiv:0809.3137. ‎

Bartlett Jr, J. H. (1936). Exchange Forces and the Structure of ‎the Nucleus. Physical Review, 49(1), 102. ‎

Battersby, S. (2013). Pear-shaped nucleus boosts search for ‎new physics. Nature, 8. ‎

Bethe, H. (1935). H. Bethe and R. Peierls, Proc. R. Soc. ‎London, Ser. A 148, 146 (1935). Proc. R. Soc. London, Ser. ‎A, 148, 146. ‎

Bethe, H. (1979). HA Bethe, GE Brown, J. Applegate, and JM ‎Lattimer, Nucl. Phys. A324, 487 (1979). Nucl. Phys., 324, ‎‎487. ‎

Borghi, C., Giori, C., & Dallolio, A. (1993). Experimental ‎evidence on the emission of neutrons from cold hydrogen ‎plasma. Yadernaya Fizika, 56(7), 147-157. ‎

Cruz, C. N. (2016). On the electrodynamics of moving ‎particles in a quasi flat spacetime with Lorentz violation ‎and its cosmological implications. International Journal of ‎Modern Physics D, 25(10), 1650096. ‎

Dirac, P. A. (1928). The quantum theory of the electron. ‎Proc. R. Soc. Lond. A, 117(778), 610-624. ‎

Dirac, P. A. (1929). Quantum mechanics of many-electron ‎systems. Proc. R. Soc. Lond. A, 123(792), 714-733. ‎

Dirac, P. A. (1930). A theory of electrons and protons. Proc. ‎R. Soc. Lond. A, 126(801), 360-365. ‎

Dirac, P. A. M. (1927). The quantum theory of dispersion. ‎Proc. R. Soc. Lond. A, 114(769), 710-728. ‎

Ebran, J.-P., Khan, E., Nikšić, T., & Vretenar, D. (2012). How ‎atomic nuclei cluster. Nature, 487(7407), 341. ‎

Eisberg, R., & Resnick, R. (1974). Quantum physics: John ‎Wiley New York.‎

Fermi, E. (1934). E. Fermi, Nuovo Cimento 11, 157 (1934). ‎Nuovo Cimento, 11, 157. ‎

Gaffney, L. P., Butler, P. A., Scheck, M., Hayes, A. B., ‎Wenander, F., Albers, M., . . . Bönig, S. (2013). Studies of ‎pear-shaped nuclei using accelerated radioactive beams. ‎Nature, 497(7448), 199. ‎

Garçon, M., & Van Orden, J. (2001). The deuteron: structure ‎and form factors Advances in Nuclear Physics (pp. 293-‎‎378): Springer.‎

Gilman, R., & Gross, F. (2002). Electromagnetic structure of ‎the deuteron. Journal of Physics G: Nuclear and Particle ‎Physics, 28(4), R37. ‎

Gorkavenko, V. M., Rudenok, I., & Vilchynskiy, S. I. (2011). ‎Leptonic asymmetry of the sterile neutrino hadronic ‎decays in the nuMSM. arXiv preprint arXiv:1201.0003. ‎

Guglinski, W. (2011). Anomalous Mass of the Neutron. ‎Journal of Nuclear Physics, http://www.journal-of-‎ ‎

Guglinski, W. (2018). Calculation of proton radius to be ‎measured in the Project MUSE. Physics Essays, , 137. ‎

Harz, J., Huang, W.-C., & Päs, H. (2015). Lepton number ‎violation and the baryon asymmetry of the universe. ‎International Journal of Modern Physics A, 30(17), ‎‎1530045. ‎

Heisenberg, W. (1932). On the structure of atomic nuclei. Z. ‎Phys., 77, 1-11. ‎

Heisenberg, W. (1933). Heisenberg Nobel lecture. ‎

Heisenberg, W. (1934). Wandlungen der Grundlagen der ‎exakten Naturwissenschaft in jüngster Zeit. ‎Naturwissenschaften, 22(40), 669-675. ‎

Herzog, F. (1984). Constraints on the anomalous magnetic ‎moment of the W boson from the magnetic moment of the ‎muon. Physics Letters B, 148(4-5), 355-357. ‎

Hestenes, D. (1990). The zitterbewegung interpretation of ‎quantum mechanics. Foundations of Physics, 20(10), ‎‎1213-1232. ‎

Hirata, K., Kajita, T., Koshiba, M., Nakahata, M., Oyama, ‎Y., Sato, N., . . . Kifune, T. (1987). Observation of a ‎neutrino burst from the supernova SN1987A. Physical ‎review letters, 58(14), 1490. ‎

Holstein, B. R. (2006). How large is the “natural” magnetic ‎moment? American Journal of Physics, 74(12), 1104-‎‎1111. ‎

Krieger, A., Blaum, K., Bissell, M. L., Frömmgen, N., Geppert, ‎C., Hammen, M., . . . Neff, T. (2012). Nuclear Charge ‎Radius of Be 12. Physical review letters, 108(14), 142501. ‎

Laurent, P., Götz, D., Binétruy, P., Covino, S., & Fernandez-‎Soto, A. (2011). Constraints on Lorentz Invariance ‎Violation using integral/IBIS observations of ‎GRB041219A. Physical Review D, 83(12), 121301. ‎

Maiezza, A., Nemevšek, M., & Nesti, F. (2015). Lepton ‎number violation in Higgs decay at LHC. Physical review ‎letters, 115(8), 081802. ‎

Majorana, E. (1933). Über die Kerntheorie. Zeitschrift für ‎Physik A Hadrons and Nuclei, 82(3), 137-145. ‎

Miller, G. A. (2007). Charge densities of the neutron and ‎proton. Physical review letters, 99(11), 112001. ‎

Miller, G. A. (2009). Understanding Electromagnetic Form ‎Factors‎ University of Washington.‎

Miller, G. A. (2010). Transverse charge densities. Annual ‎Review of Nuclear and Particle Science, 60, 1-25. ‎

Nassif, C. (2008). Deformed special relativity with an ‎invariant minimum speed and its cosmological ‎implications. Pramana, 71(1), 1-13. ‎

Nassif, C. (2010). Deformed Special Relativity with an ‎energy barrier of a minimum speed. International Journal ‎of Modern Physics D, 19(05), 539-564. ‎

Nassif, C. (2012). Double special relativity with a minimum ‎speed and the uncertainty principle. International Journal ‎of Modern Physics D, 21(02), 1250010. ‎

Nassif, C. (2015). An explanation for the tiny value of the ‎cosmological constant and the low vacuum energy density. ‎General Relativity and Gravitation, 47(9), 107. ‎

Nassif, C., & de Faria Jr, A. A. (2012). Variation of the speed ‎of light with temperature of the expanding universe. ‎Physical Review D, 86(2), 027703. ‎

Neutron magnetic moment. from ‎

Nörtershäuser, W., Tiedemann, D., Žáková, M., Andjelkovic, ‎Z., Blaum, K., Bissell, M., . . . Kowalska, M. (2009). Nuclear ‎Charge Radii of Be 7, 9, 10 and the One-Neutron Halo ‎Nucleus Be 11. Physical review letters, 102(6), 062503. ‎

Peng, T., Ramsey-Musolf, M. J., & Winslow, P. (2016). TeV ‎lepton number violation: From neutrinoless double-β decay ‎to the LHC. Physical Review D, 93(9), 093002. ‎

Rabinowitz, M. (2013). Challenges to Bohr’s wave-particle ‎complementarity principle. International Journal of ‎Theoretical Physics, 52(2), 668-678. ‎

Rozema, L. A., Darabi, A., Mahler, D. H., Hayat, A., ‎Soudagar, Y., & Steinberg, A. M. (2012). Violation of ‎Heisenberg’s measurement-disturbance relationship by ‎weak measurements. Physical review letters, 109(10), ‎‎100404. ‎

Samuel, K. B., Samuel, M. A., & Li, G. (1990). On the W ‎boson anomalous magnetic moment. Modern Physics ‎Letters A, 5(14), 1119-1123. ‎

Santilli, R. M. (2006). Confirmation of Don Borghi's ‎experiment on the synthesis of neutrons from protons and ‎electrons. arXiv preprint physics/0608229. ‎

Seakeasy. (1996). In S. i. t. Deuteron (Ed.), ‎‎

Urban, M., Couchot, F., Sarazin, X., & Djannati-Atai, A. ‎‎(2013). The quantum vacuum as the origin of the speed of ‎light. The European Physical Journal D, 67(3), 58. ‎

Wigner, E. (1933). On the mass defect of helium. Physical ‎Review, 43(4), 252. ‎

Wilson, C., Johansson, G., Pourkabirian, A., Simoen, M., ‎Johansson, J., Duty, T., . . . Delsing, P. (2011). Observation ‎of the dynamical Casimir effect in a superconducting ‎circuit. Nature, 479(7373), 376. ‎

Yukawa, H. (1935). On the interaction of elementary ‎particles. I. Proceedings of the Physico-Mathematical ‎Society of Japan. 3rd Series, 17, 48-57. ‎

Yukawa, H. (1937). On a possible interpretation of the ‎penetrating component of the cosmic ray. Proceedings of ‎the Physico-Mathematical Society of Japan. 3rd Series, ‎‎19, 712-713. ‎

Zee, A. (1980). A theory of lepton number violation and ‎neutrino Majorana masses. Physics Letters B, 93(4), 389-‎‎393. ‎

How to Cite
Guglinski, W. (2018). Re-evaluation of Fermi’s theory of beta-decay. International Journal of Fundamental Physical Sciences (IJFPS), 8(2), 19-43.