Features of Loschmidt's Number and Its Theoretical Frontiers

Theoretical Physics

Authors

  • M.E. Zhussupov Science, Noosphereorder Co., London, UK

DOI:

https://doi.org/10.14331/ijfps.2014.330067

Keywords:

Loschmidt's number, fundamental pressure, gravitation, electromagnetism, physical vacuum

Abstract

Loschmidt's number has played an important role in the development of science and technology and in the establishment of various standards. However, despite advances in the technological methods of estimating Loschmidt's number, the nature of its formation remains unknown. The information that lies in the nature of this constant can be useful for understanding the properties of a physical vacuum and the character of processes of the interaction of matter in this environment. Basing on time and experiment-tested the laws of molecular physics and thermodynamics, some features of the host medium of micro-particles involved in the formation of Loschmidt’s number were identified, describing its nature and the previously unknown phenomena of fundamental pressure of a Universe. The characteristics of various physical and chemical processes occurring in systems associated with a vacuum and the behavior of heavenly bodies are considered from the perspective of this phenomenon’s existence.

Downloads

Download data is not yet available.

References

Andreas, B., Azuma, Y., Bartl, G., Becker, P., Bettin, H., Borys, M., Fujii, K. (2011). Determination of the Avogadro Constant by Counting the Atoms in a Si 28 Crystal. Physical review letters, 106(3), 030801.

Avogadro, A. (1811). Essai d'une manière de déterminer les masses relatives des molécules élémentaires des corps, et les proportions selon lesquelles elles entrent dans les combinaisons.

Becker, P. (2012). The new kilogram definition based on counting the atoms in a 28Si crystal. Contemporary Physics, 53(6), 461-479.

CERN‎. (2013). New Results Indicate that New Particle Is a HiggsBoson‎.http://home.web.cern.ch/about/updates/2013/03/new-‎results-indicate-new-particle-higgs-boson

Chassefière, E., Bertaux, J.-L., Berthelier, J.-J., Cabane, M., Ciarletti, V., Durry, G., Menvielle, M. (2004). MEP (Mars Environment Package): toward a package for studying environmental conditions at the surface of Mars from future lander/rover missions. Advances in Space Research, 34(8), 1702-1709.

De Broglie, L. (1923). Waves and quanta. Nature, 112(2815), 540-540.

Galanin, A. (1990). Introduction to the Theory of Nuclear Reactors Operating on Thermal Neutrons: Énergoatomizdat, Moscow.

Hoover, W. G., & Hoover, C. (2003). Links between microscopic and macroscopic fluid mechanics. Molecular Physics, 101(11), 1559-1573.

Kuchling, H. (1980). Physics. Veb Fachbuchverlag, Leipzig Loschmidt constant, (n.d.). from http://en.wikipedia.org/wiki/Loschmidt%27s_number

Martel, L. M. V., ‎‎. (2013). Magnesium-rich Basalts on Mercury, Retrieved from. from http://www.psrd.hawaii.edu/May13/Mercury-Mg-rich-‎crust.html

Mohideen, U., & Roy, A. (1998). Precision measurement of the Casimir force from 0.1 to 0.9 μ m. Physical Review Letters, 81(21), 4549.

Mohr, P. J., & Taylor, B. N. (2005). CODATA recommended values of the fundamental physical constants: 2002. Reviews of Modern Physics, 77(1), 1.

NASA. (2014). Neptune's magnetic environment, Retrieved ‎from.‎http://voyager.jpl.nasa.gov/science/neptune_magnetic.html

NASA. ( 2011). What Is Jupiter? Retrieved from http://www.nasa.gov/audience/forstudents/5-‎‎8/features/what-is-jupiter-58.html#.U1K5WlXwuSp

Nuclear Data Center.

. Retrieved 46-Pd-‎‎106, from http://wwwndc.jaea.go.jp/cgi-bin/Tab80WWW.cgi?/data/JENDL/JENDL-4-prc/intern/Pd106.intern

Perrin, J. (1923). Atoms. translated by DL Hammick. London: Constable.

Perrin, J. (2013). Brownian movement and molecular reality: Courier Dover Publications.

Russell, C. T. ( 1981). Planetary magnetism. Adv. Space Res., 1‎, pp. 257-263.

Russell, C. T., & Luhmann, J. G‎. (1997). Mercury: Magnetic field and magnetosphere. Enciclopedia of Planetary Sciences, 476-478.

Ryder, L. (1985). Quantum field theory, 1985. Cambridge, Uk: Univ. Pr.

Salam, A., & Sivaram, C. (1993). Strong gravity approach to QCD and confinement. Modern Physics Letters A, 8(04), 321-326.

Virgo, S. (1933). Loschmidt’s number. Science Progress, 27, 634-649.

Zhang, T., Lu, Q., Baumjohann, W., Russell, C., Fedorov, A., Barabash, S., Nakamura, R. (2012). Magnetic reconnection in the near Venusian magnetotail. Science, 336(6081), 567-570.

Zhussupov, M. (2011a,). Thermodynamic Criterions for ‎Association of the Four Fundamental Interactions,. Thermodynamics 2011 Conference, (p. 431), .

Zhussupov, M. (2011b). An Astronomical Criterion for ‎Association of the Four Fundamental Interactions. Kepler Science Conference, (p. 155).

Zhussupov, M. (2011c, ). e-Chemist. Thermodynamics ‎‎2011 Conference‎, (p. 508).

Zhussupov, M. (2013). Feature of Thermodynamic Modelling ‎on the Base of Unification of the Fundamental Interactions ‎as an Alternative to Quantum Mechanics. Thermodynamics ‎Conference

Published

2014-09-30

How to Cite

Zhussupov, M. . (2014). Features of Loschmidt’s Number and Its Theoretical Frontiers: Theoretical Physics. International Journal of Fundamental Physical Sciences, 4(3), 62-71. https://doi.org/10.14331/ijfps.2014.330067

Issue

Section

ORIGINAL ARTICLES