Relation of Matter-wave Verified in Diffusion Theory

Physics, De Broglie hypothesis

  • Takahisa Okino Department of Applied Mathematics, Faculty of Science & Engineering, Oita University 700 Danoharu, Oita City, Oita Prefecture, Japan
Keywords: De broglie hypothesis, Schreadinger equation, Markov Process, Diffusion equation


Investigating the elementary process of diffusion yielded the universal expression of diffusivity relevant to the angular momentum of each microparticle in a material. Using the diffusivity obtained then for the diffusion equation, the wave equation of Schreadinger was theoretically derived from the physical concept in Newton mechanics. The derivation itself reveals that any moving microparticle has the wave image as an intrinsic nature. It was theoretically revealed that the relation having been accepted as a hypothesis proposed by De Broglie is really valid for any moving microparticle and also that another relation of matter-wave is possible. The new diffusion theory based on the matter-wave will be useful for further development of the nanotechnology in materials science.


Download data is not yet available.

Author Biography

Takahisa Okino, Department of Applied Mathematics, Faculty of Science & Engineering, Oita University 700 Danoharu, Oita City, Oita Prefecture, Japan
Biography of Prof. Takahisa Okino


Prof. Takahisa Okino is Professor emeritus of Oita University in Japan. He has researched the fundamental problems of microparticles in relation to the diffusion phenomena after retirement. The present paper is one of his life works. The problems discussed here are dominant and fundamental ones relevant to the De Broglie hypothesis and the Fick laws.



AA Markov, N. N. (1960). The theory of algorithms. English translation Mathematics and its applications (Soviet series). Kluwer Academic Publishers, Dordrecht, Boston, and London, 1988. The Journal of Symbolic Logic, 56(1), 336-337.

Arndt, M., Nairz, O., Voss-Andreae, J., & Keller, C. (1999). G. van der Zouw, G.; Zeilinger, A. Wave-Particle Duality of C60 Molecules. Nature, 401, 680-682.

Balmer, J. J. (1885). Notiz über die Spectrallinien des Wasserstoffs. Annalen der physik, 261(5), 80-87.

Bohr, N. (1913). XXXVII. On the constitution of atoms and molecules. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 26(153), 476-502.

Boltzmann, L. (1872). Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen, Sitzungs. Akad. Wiss. Wein 66 (1872), 275–370; English: Further Studies on the Thermal Equilibrium of Gas Molecules. Kinetic Theory, 2, 88-174.

Born, M., & Huang, K. (1954). Dynamical theory of crystal lattices: Clarendon press.

Brown, R. (1828). XXVII. A brief account of microscopical observations made in the months of June, July and August 1827, on the particles contained in the pollen of plants; and on the general existence of active molecules in organic and inorganic bodies. The Philosophical Magazine, 4(21), 161-173.

Davisson, C., & Germer, L. (1928). Reflection of electrons by a crystal of nickel. Proceedings of the National Academy of Sciences of the United States of America, 14(4), 317.

De Broglie, L. (1923). Waves and quanta. Nature, 112(2815), 540.

Doak, R., Grisenti, R., Rehbein, S., Schmahl, G., Toennies, J., & Wöll, C. (1999). Towards realization of an atomic de Broglie microscope: helium atom focusing using Fresnel zone plates. Physical review letters, 83(21), 4229.

Einstein, A. (1905). Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt. Annalen der physik, 322(6), 132-148.

Euler, L. (1761). Principia motus fluidorum. Novi commentarii academiae scientiarum Petropolitanae, 271-311.

Fick, A. (1855). V. On liquid diffusion. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 10(63), 30-39.

Frank, J., & Hertz, G. (1914). Über die erregung der Quecksilberresonanzlinie 253.6 durch Elektronenstösse. Verhandlungen der Deutschen Physikalischen Gesellschaft, Berlin, 16, 512.

Okino, T. (2011). New Mathematical Solution for Analyzing Interdiffusion Problems. Materials Transactions, 52(12), 2220-2227.

Okino, T. (2012). Brownian Motion in Parabolic Space. Journal of Modern Physics, 3(03), 255.

Okino, T. (2013). Correlation between Diffusion Equation and Schrödinger Equation. Journal of Modern Physics, 4(05), 612.

Okino, T. (2015). Mathematical Physics in Diffusion Problems. Journal of Modern Physics, 6(14), 2109.

Okino, T. (2018). Quantum Effect on Elementary Process of Diffusion and Collective Motion of Brown Particles. Journal of Modern Physics, 9(05), 1007.

Okino, T. (2019). Establishment of New Fundamental Theory in Diffusion Phenomena. Applied Physics Research, 11(1). doi: 10.5539/apr.v11n1

Planck, M. K. E. L. (1900). Zur theorie des gesetzes der energieverteilung im normalspectrum. Verhandl. Dtsc. Phys. Ges., 2, 237.

Schrödinger, E. (1926). Quantisierung als eigenwertproblem. Annalen der physik, 385(13), 437-490.

Shimizu, F. (2001). Specular reflection of very slow metastable neon atoms from a solid surface. Physical review letters, 86(6), 987.

Thomson, G. P., & Reid, A. (1927). Diffraction of cathode rays by a thin film. Nature, 119(3007), 890.

How to Cite
Okino, T. (2019). Relation of Matter-wave Verified in Diffusion Theory. International Journal of Fundamental Physical Sciences (IJFPS), 9(3), 48-54.