Re-evaluation of Fermi’s theory of beta-decay

Physics

  • Wladimir Guglinski Escola de Engenharia da Universidade Federal de Minas Gerais, Av. Presidente Antonio Carlos, 6627, Pampulha, Belo Horizonte-MG,  Brazil
Keywords: Fermi’s beta-decay‎, Neutron quark model, Neutron distribution, Jefferson Lab (JLAB)

Abstract

c.php?d=5&id=121081&s=16  Views 

Another published paper of the author proposes that proton and neutron radii have contraction ‎inside the atomic nuclei, generating a discrepancy of 8s between the neutron lifetime measured in ‎beam and bottle experiments. According to the present theory, the neutron radius in beam ‎experiments dilates from 0.26fm up to 0.87fm during the initial 8s, after which begins the process of ‎decay. The present paper proposes a new neutron model with quark structure d(u-e-u), with an ‎electron sandwiched between two up quarks. It reproduces very well all neutron properties, as for ‎instance the radial charge distribution, impossible to be reproduced considering the current quark ‎model ddu. So, the radial charge distribution of neutrons (obtained from beam experiments, if ‎measured in the first initial 8 seconds of their lifetime) has to exhibit a curve a little different of that ‎measured in 2007 in the Jefferson Lab. Here is proposed to JLab to repeat the experiment under ‎such new condition. 

Downloads

Download data is not yet available.

Author Biography

Wladimir Guglinski, Escola de Engenharia da Universidade Federal de Minas Gerais, Av. Presidente Antonio Carlos, 6627, Pampulha, Belo Horizonte-MG,  Brazil

 

 

 

 

References

Aartsen, M., Abraham, K., Ackermann, M., Adams, J., ‎Aguilar, J., Ahlers, M., . Anderson, T. (2016). Searches for ‎sterile neutrinos with the IceCube detector. Physical review ‎letters, 117(7), 071801. ‎
Abada, A., Arcadi, G., Domcke, V., & Lucente, M. (2015). ‎Lepton number violation as a key to low-scale ‎leptogenesis. Journal of Cosmology and Astroparticle ‎Physics, 2015(11), 041. ‎
Adamson, P. (2013). Neutrino Velocity: Results and ‎prospects of experiments at beamlines other than CNGS. ‎Nuclear Physics B-Proceedings Supplements, 235, 296-‎‎300. ‎
Advisory‎, N. S. (2007). The frontiers of nuclear science, a ‎long range plan. arXiv preprint arXiv:0809.3137. ‎
Bartlett Jr, J. H. (1936). Exchange Forces and the Structure of ‎the Nucleus. Physical Review, 49(1), 102. ‎
Battersby, S. (2013). Pear-shaped nucleus boosts search for ‎new physics. Nature, 8. ‎
Bethe, H. (1935). H. Bethe and R. Peierls, Proc. R. Soc. ‎London, Ser. A 148, 146 (1935). Proc. R. Soc. London, Ser. ‎A, 148, 146. ‎
Bethe, H. (1979). HA Bethe, GE Brown, J. Applegate, and JM ‎Lattimer, Nucl. Phys. A324, 487 (1979). Nucl. Phys., 324, ‎‎487. ‎
Borghi, C., Giori, C., & Dallolio, A. (1993). Experimental ‎evidence on the emission of neutrons from cold hydrogen ‎plasma. Yadernaya Fizika, 56(7), 147-157. ‎
Cruz, C. N. (2016). On the electrodynamics of moving ‎particles in a quasi flat spacetime with Lorentz violation ‎and its cosmological implications. International Journal of ‎Modern Physics D, 25(10), 1650096. ‎
Dirac, P. A. (1928). The quantum theory of the electron. ‎Proc. R. Soc. Lond. A, 117(778), 610-624. ‎
Dirac, P. A. (1929). Quantum mechanics of many-electron ‎systems. Proc. R. Soc. Lond. A, 123(792), 714-733. ‎
Dirac, P. A. (1930). A theory of electrons and protons. Proc. ‎R. Soc. Lond. A, 126(801), 360-365. ‎
Dirac, P. A. M. (1927). The quantum theory of dispersion. ‎Proc. R. Soc. Lond. A, 114(769), 710-728. ‎
Ebran, J.-P., Khan, E., Nikšić, T., & Vretenar, D. (2012). How ‎atomic nuclei cluster. Nature, 487(7407), 341. ‎
Eisberg, R., & Resnick, R. (1974). Quantum physics: John ‎Wiley New York.‎
Fermi, E. (1934). E. Fermi, Nuovo Cimento 11, 157 (1934). ‎Nuovo Cimento, 11, 157. ‎
Gaffney, L. P., Butler, P. A., Scheck, M., Hayes, A. B., ‎Wenander, F., Albers, M., . . . Bönig, S. (2013). Studies of ‎pear-shaped nuclei using accelerated radioactive beams. ‎Nature, 497(7448), 199. ‎
Garçon, M., & Van Orden, J. (2001). The deuteron: structure ‎and form factors Advances in Nuclear Physics (pp. 293-‎‎378): Springer.‎
Gilman, R., & Gross, F. (2002). Electromagnetic structure of ‎the deuteron. Journal of Physics G: Nuclear and Particle ‎Physics, 28(4), R37. ‎
Gorkavenko, V. M., Rudenok, I., & Vilchynskiy, S. I. (2011). ‎Leptonic asymmetry of the sterile neutrino hadronic ‎decays in the nuMSM. arXiv preprint arXiv:1201.0003. ‎
Guglinski, W. (2011). Anomalous Mass of the Neutron. ‎Journal of Nuclear Physics, http://www.journal-of-‎nuclear-physics.com/?p=516. ‎
Guglinski, W. (2018). Calculation of proton radius to be ‎measured in the Project MUSE. Physics Essays, , 137. ‎
Harz, J., Huang, W.-C., & Päs, H. (2015). Lepton number ‎violation and the baryon asymmetry of the universe. ‎International Journal of Modern Physics A, 30(17), ‎‎1530045. ‎
Heisenberg, W. (1932). On the structure of atomic nuclei. Z. ‎Phys., 77, 1-11. ‎
Heisenberg, W. (1933). Heisenberg Nobel lecture. ‎
Heisenberg, W. (1934). Wandlungen der Grundlagen der ‎exakten Naturwissenschaft in jüngster Zeit. ‎Naturwissenschaften, 22(40), 669-675. ‎
Herzog, F. (1984). Constraints on the anomalous magnetic ‎moment of the W boson from the magnetic moment of the ‎muon. Physics Letters B, 148(4-5), 355-357. ‎
Hestenes, D. (1990). The zitterbewegung interpretation of ‎quantum mechanics. Foundations of Physics, 20(10), ‎‎1213-1232. ‎
Hirata, K., Kajita, T., Koshiba, M., Nakahata, M., Oyama, ‎Y., Sato, N., . . . Kifune, T. (1987). Observation of a ‎neutrino burst from the supernova SN1987A. Physical ‎review letters, 58(14), 1490. ‎
Holstein, B. R. (2006). How large is the “natural” magnetic ‎moment? American Journal of Physics, 74(12), 1104-‎‎1111. ‎
Krieger, A., Blaum, K., Bissell, M. L., Frömmgen, N., Geppert, ‎C., Hammen, M., . . . Neff, T. (2012). Nuclear Charge ‎Radius of Be 12. Physical review letters, 108(14), 142501. ‎
Laurent, P., Götz, D., Binétruy, P., Covino, S., & Fernandez-‎Soto, A. (2011). Constraints on Lorentz Invariance ‎Violation using integral/IBIS observations of ‎GRB041219A. Physical Review D, 83(12), 121301. ‎
Maiezza, A., Nemevšek, M., & Nesti, F. (2015). Lepton ‎number violation in Higgs decay at LHC. Physical review ‎letters, 115(8), 081802. ‎
Majorana, E. (1933). Über die Kerntheorie. Zeitschrift für ‎Physik A Hadrons and Nuclei, 82(3), 137-145. ‎
Miller, G. A. (2007). Charge densities of the neutron and ‎proton. Physical review letters, 99(11), 112001. ‎
Miller, G. A. (2009). Understanding Electromagnetic Form ‎Factors‎ University of Washington.‎
Miller, G. A. (2010). Transverse charge densities. Annual ‎Review of Nuclear and Particle Science, 60, 1-25. ‎
Nassif, C. (2008). Deformed special relativity with an ‎invariant minimum speed and its cosmological ‎implications. Pramana, 71(1), 1-13. ‎
Nassif, C. (2010). Deformed Special Relativity with an ‎energy barrier of a minimum speed. International Journal ‎of Modern Physics D, 19(05), 539-564. ‎
Nassif, C. (2012). Double special relativity with a minimum ‎speed and the uncertainty principle. International Journal ‎of Modern Physics D, 21(02), 1250010. ‎
Nassif, C. (2015). An explanation for the tiny value of the ‎cosmological constant and the low vacuum energy density. ‎General Relativity and Gravitation, 47(9), 107. ‎
Nassif, C., & de Faria Jr, A. A. (2012). Variation of the speed ‎of light with temperature of the expanding universe. ‎Physical Review D, 86(2), 027703. ‎
Neutron magnetic moment. from ‎https://en.wikipedia.org/wiki/Neutron_magnetic_moment
Nörtershäuser, W., Tiedemann, D., Žáková, M., Andjelkovic, ‎Z., Blaum, K., Bissell, M., . . . Kowalska, M. (2009). Nuclear ‎Charge Radii of Be 7, 9, 10 and the One-Neutron Halo ‎Nucleus Be 11. Physical review letters, 102(6), 062503. ‎
Peng, T., Ramsey-Musolf, M. J., & Winslow, P. (2016). TeV ‎lepton number violation: From neutrinoless double-β decay ‎to the LHC. Physical Review D, 93(9), 093002. ‎
Rabinowitz, M. (2013). Challenges to Bohr’s wave-particle ‎complementarity principle. International Journal of ‎Theoretical Physics, 52(2), 668-678. ‎
Rozema, L. A., Darabi, A., Mahler, D. H., Hayat, A., ‎Soudagar, Y., & Steinberg, A. M. (2012). Violation of ‎Heisenberg’s measurement-disturbance relationship by ‎weak measurements. Physical review letters, 109(10), ‎‎100404. ‎
Samuel, K. B., Samuel, M. A., & Li, G. (1990). On the W ‎boson anomalous magnetic moment. Modern Physics ‎Letters A, 5(14), 1119-1123. ‎
Santilli, R. M. (2006). Confirmation of Don Borghi's ‎experiment on the synthesis of neutrons from protons and ‎electrons. arXiv preprint physics/0608229. ‎
Seakeasy. (1996). In S. i. t. Deuteron (Ed.), ‎http://www.phy.anl.gov/theory/movie-run.html.‎
Urban, M., Couchot, F., Sarazin, X., & Djannati-Atai, A. ‎‎(2013). The quantum vacuum as the origin of the speed of ‎light. The European Physical Journal D, 67(3), 58. ‎
Wigner, E. (1933). On the mass defect of helium. Physical ‎Review, 43(4), 252. ‎
Wilson, C., Johansson, G., Pourkabirian, A., Simoen, M., ‎Johansson, J., Duty, T., . . . Delsing, P. (2011). Observation ‎of the dynamical Casimir effect in a superconducting ‎circuit. Nature, 479(7373), 376. ‎
Yukawa, H. (1935). On the interaction of elementary ‎particles. I. Proceedings of the Physico-Mathematical ‎Society of Japan. 3rd Series, 17, 48-57. ‎
Yukawa, H. (1937). On a possible interpretation of the ‎penetrating component of the cosmic ray. Proceedings of ‎the Physico-Mathematical Society of Japan. 3rd Series, ‎‎19, 712-713. ‎
Zee, A. (1980). A theory of lepton number violation and ‎neutrino Majorana masses. Physics Letters B, 93(4), 389-‎‎393. ‎
IJFPS
Published
2018-06-05
How to Cite
Guglinski, W. (2018). Re-evaluation of Fermi’s theory of beta-decay. International Journal of Fundamental Physical Sciences, 8(2), 19-43. https://doi.org/https://doi.org/10.14331/ijfps.2018.330112
Section
Articles