On how Bohr model of hydrogen atom is connected ‎to ‎nuclear physics


  • Wladimir Guglinski Escola de Engenharia da Universidade Federal de Minas Gerais, Av. Presidente Antonio Carlos, 6627,‎ Pampulha, Belo Horizonte-MG, Brazil‎
Keywords: Electric field structure, Modified Coulomb’s law, Modified Bohr’s hydrogen model


c.php?d=5&id=121083&s=16   Views

The atom model of Quantum Mechanics (QM) was conceived from an unsolved paradox. Indeed, Schrödinger’s equation has been deducted by considering a free electron, but it is applied for the atom, where the electron is inside a potential. In order to eliminate the nonsense, quantum theorists proposed a ridiculous postulate: they claim it makes sense to use the equation because it gives results in the agreement to experimental data. The unsolved paradox evidence that Schrödinger’s equation cannot be applied to the physical conditions considered in the QM atom model, and that his equation actually requires some special conditions not considered in the theory (for instance, the electron helical trajectory, rejected by Heisenberg). The banishment of the aether has introduced several paradoxes in the development of Theoretical Physics. And because the theorists have neglected other paradox (from the mathematical probability the spectacular successes of Bohr’s hydrogen atom cannot be accidental), these two unsolved paradoxes introduced dramatic consequences in the development of Nuclear Physics. 


Download data is not yet available.

Author Biography

Wladimir Guglinski, Escola de Engenharia da Universidade Federal de Minas Gerais, Av. Presidente Antonio Carlos, 6627,‎ Pampulha, Belo Horizonte-MG, Brazil‎




Cruz, C. N. (2016). On the electrodynamics of moving ‎particles in a quasi flat spacetime with Lorentz violation ‎and its cosmological implications. International Journal of ‎Modern Physics D, 25(10), 1650096. doi: ‎‎10.1142/s0218271816500966‎
Cruz, C. N., dos Santos, R. F., & Amaro de Faria, A. C. ‎‎(2018). Lorentz violation with a universal minimum speed ‎as foundation of de Sitter relativity. International Journal ‎of Modern Physics D, 27(02), 1850011. doi: ‎‎10.1142/s0218271818500116‎
Ebran, J.-P., Khan, E., Nikšić, T., & Vretenar, D. (2012). How ‎atomic nuclei cluster. Nature, 487(7407), 341. ‎
Gaffney, L. P., Butler, P. A., Scheck, M., Hayes, A. B., ‎Wenander, F., Albers, M., . . . Bönig, S. (2013). Studies of ‎pear-shaped nuclei using accelerated radioactive beams. ‎Nature, 497(7448), 199. ‎
Guglinski, W. (2015). The Evolution of Physics: From ‎Newton to Rossi’s eCat (English Edition): Amazon.com.‎
Guglinski, W. (2018). Calculation of proton radius to be ‎measured in the Project MUSE. Physics Essays, 31(2), 137. ‎
Kohl, M. (2014). The Muon Scattering Experiment (MUSE) ‎at PSI and the proton radius puzzle. Paper presented at the ‎EPJ Web of Conferences.‎
Kostro, L. (2000). Einstein and the Ether: Apeiron.‎
Nassif, C. (2017). An experimental route for testing Lorentz ‎violation in ultracold gases. arXiv preprint ‎arXiv:1709.04296. ‎
Nörtershäuser, W., Tiedemann, D., Žáková, M., Andjelkovic, ‎Z., Blaum, K., Bissell, M., . . . Kowalska, M. (2009). Nuclear ‎Charge Radii of Be 7, 9, 10 and the One-Neutron Halo ‎Nucleus Be 11. Physical review letters, 102(6), 062503. ‎
Schrödinger, E. (1923). Über eine bemerkenswerte ‎Eigenschaft der Quantenbahnen eines einzelnen Elektrons. ‎Zeitschrift für Physik, 12(1), 13-23. ‎
Urban, M., Couchot, F., Sarazin, X., & Djannati-Atai, A. ‎‎(2013). The quantum vacuum as the origin of the speed of ‎light. The European Physical Journal D, 67(3), 58. ‎
Wilson, C., Johansson, G., Pourkabirian, A., Simoen, M., ‎Johansson, J., Duty, T., Delsing, P. (2011). Observation of ‎the dynamical Casimir effect in a superconducting circuit. ‎Nature, 479(7373), 376. ‎
How to Cite
Guglinski, W. (2018). On how Bohr model of hydrogen atom is connected ‎to ‎nuclear physics. International Journal of Fundamental Physical Sciences, 8(2), 44-53. https://doi.org/https://doi.org/10.14331/ijfps.2018.330113