On how proton radius shrinkage can be connected with ‎Lorentz factor violation


  • Wladimir Guglinski Escola de Engenharia da Universidade Federal de Minas Gerais, Av. Presidente Antonio Carlos, 6627,‎ Pampulha, Belo Horizonte-MG, Brazil ‎
Keywords: New nuclear model, Ellipsoidal even-even nuclei, Electron & positron substructures, Nuclear puzzles


 c.php?d=5&id=121084&s=16   Views

Several new experimental findings have shown that atomic nuclei cannot have a similar structure of that adopted in the ‎Standard Nuclear Physics (SNP), because there are insurmountable obstacles to be transposed. Nuclear theorists have tried to ‎explain some of the misfires with bizarre theories, but there is a failure impossible to be explained by any theoretical attempt, ‎and such failure impossible to be solved represents the definitive proof that SNP works through wrong foundations. The failure ‎comes from the excited isotopes carbon-12, oxygen-16, Argon-36, calcium-40, and calcium-42. All them with spin 2, have null ‎magnetic moments, but this is impossible because it’s any combination of spins from which those excited isotopes, with spin 2, may ‎have a null magnetic moment, if we try to explain it with any of the current nuclear models of the SNP.‎ And the unavoidable conclusion is that it’s impossible to eliminate the inconsistencies of the SNP by keeping its current ‎fundamental premises.‎




Download data is not yet available.

Author Biography

Wladimir Guglinski, Escola de Engenharia da Universidade Federal de Minas Gerais, Av. Presidente Antonio Carlos, 6627,‎ Pampulha, Belo Horizonte-MG, Brazil ‎


Antonello, M., Aprili, P., Baiboussinov, B., Ceolin, M. B., ‎Benetti, P., Calligarich, E., Cieślik, K. (2012). Measurement ‎of the neutrino velocity with the ICARUS detector at the ‎CNGS beam. Physics Letters B, 713(1), 17-22. ‎
Bahcall, J. (1998). Solar neutrinos: Where we are, what we ‎need. Nuclear Physics A, 631, 29-41. ‎
Cruz, C. N. (2016). On the electrodynamics of moving ‎particles in a quasi flat spacetime with Lorentz violation ‎and its cosmological implications. International Journal of ‎Modern Physics D, 25(10), 1650096. ‎
Csótó, A., & Langanke, K. (1998). Effects of 8B size on the ‎low-energy 7Be (p, γ) 8B cross section. Nuclear Physics A, ‎‎636(2), 240-246. ‎
Csόtό, A., Langanke, K., Koonin, S., & Shoppa, T. (1995). ^ ‎‎7Be (p, γ)^ 8B cross section and the properties of^ 7Be. ‎Physical Review C, 52(2), 1130-1133. ‎
Ebran, J.-P., Khan, E., Nikšić, T., & Vretenar, D. (2012). How ‎atomic nuclei cluster. Nature, 487(7407), 341. ‎
Gaffney, L. P., Butler, P. A., Scheck, M., Hayes, A. B., ‎Wenander, F., Albers, M., Bönig, S. (2013). Studies of pear-‎shaped nuclei using accelerated radioactive beams. Nature, ‎‎497(7448), 199. ‎
Guglinski, W. (2006). Quantum Ring Theory, : Bäuu Institute ‎Press. Boulder, Co, US‎.‎
Guglinski, W. (2018a). Calculation of proton radius to be ‎measured in the Project MUSE. Physics Essays, 31(2), 137. ‎
Guglinski, W. (2018b). On how Bohr model of hydrogen ‎atom is connected‎ to‎ nuclear physics. International ‎Journal of Fundamental Physical Sciences, 8(2), 45-54. ‎doi: ‎https://doi.org/https://doi.org/10.14331/ijfps.2018.330113‎
Guglinski, W. (2018c). Re-evaluation of Fermi’s theory of ‎beta-decay. International Journal of Fundamental ‎Physical Sciences, 8(2), 19-43. ‎
Krasznahorkay, A., Csatlós, M., Csige, L., Gácsi, Z., Gulyás, ‎J., Hunyadi, M.,Timár, J. (2016). Observation of ‎Anomalous Internal Pair Creation in Be 8: A Possible ‎Indication of a Light, Neutral Boson. Physical review ‎letters, 116(4), 042501. ‎
Krieger, A., Blaum, K., Bissell, M. L., Frömmgen, N., Geppert, ‎C., Hammen, M., .Neff, T. (2012). Nuclear Charge Radius ‎of Be 12. Physical review letters, 108(14), 142501. ‎
Nassif, C. (2008). Deformed special relativity with an ‎invariant minimum speed and its cosmological ‎implications. Pramana, 71(1), 1-13. ‎
Nassif, C. (2010). Deformed Special Relativity with an ‎energy barrier of a minimum speed. International Journal ‎of Modern Physics D, 19(05), 539-564. ‎
Nassif, C. (2012). Double special relativity with a minimum ‎speed and the uncertainty principle. International Journal ‎of Modern Physics D, 21(02), 1250010. ‎
Nassif, C. (2015). An explanation for the tiny value of the ‎cosmological constant and the low vacuum energy density. ‎General Relativity and Gravitation, 47(9), 107. ‎
Nörtershäuser, W., Tiedemann, D., Žáková, M., Andjelkovic, ‎Z., Blaum, K., Bissell, M., Kowalska, M. (2009). Nuclear ‎Charge Radii of Be 7, 9, 10 and the One-Neutron Halo ‎Nucleus Be 11. Physical review letters, 102(6), 062503. ‎
Pohl, R., Antognini, A., Nez, F., Amaro, F. D., Biraben, F., ‎Cardoso, J. M., . Fernandes, L. M. (2010). The size of the ‎proton. Nature, 466(7303), 213. ‎
Pohl, R., Nez, F., Fernandes, L. M., Amaro, F. D., Biraben, F., ‎Cardoso, J. M., . Diepold, M. (2016). Laser spectroscopy of ‎muonic deuterium. Science, 353(6300), 669-673. ‎
Tang, Z. (2018). Search for the Neutron Decay n→ X+γ ‎where X is a dark matter particle. arXiv preprint ‎arXiv:1802.01595. ‎
How to Cite
Guglinski, W. (2018). On how proton radius shrinkage can be connected with ‎Lorentz factor violation. International Journal of Fundamental Physical Sciences, 8(2), 54-73. https://doi.org/https://doi.org/10.14331/ijfps.2018.330114