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ABSTRACT 
The general solution of a static sphere of perfect fluid of uniform density using isotropic line element has been obtained by 

using the additional condition of continuity at the boundary 𝑟 = 𝑎. Here it is shown that, this solution is a solution of 

equation of Wyman with an additional integrating constant. If  we do not put the condition of continuity at the boundary 

𝑟 = 𝑎, then it can be shown that 𝑝 → 0 as 𝑘2 → ∞ using equation of Wyman so the solution of static sphere of dust can be 

obtained using Wyman’s solution by putting 𝑝 = 0 in the solution, so that 𝑅2 in terms 𝜌
0
 is for dust instead of 𝑅2 in terms of 

𝜌, of fluid obtained by Wyman. The anomalies discussed in the present paper can be removed by new field equation. The 

new proposed field equation is given and it is shown that the new proposed equation can bring Newtonian approximation. 
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INTRODUCTION  

Some anomalies discussed in earlier papers of (Rawal, 

Deshpande, Kelkar, & Shenoy, 1991; Rawal, Kelkar, 

Deshpande, & Shenoy, 1989) and Kelkar.et .al3 in 2000 and 

2001 and also anomalies discussed in the present paper can 

be removed by new field equation. Wyman (1946) has 

obtained an exact solution in the case of static sphere of 

perfect fluid of uniform density with using the following 

isotropic line element. 

 𝑑𝑠2 = −𝑒μ 𝑑𝑟2 + 𝑟2𝑑θ2 + 𝑟2𝑆𝑖𝑛2θ𝑑𝜑2 + 𝑒𝜈𝑑𝑡2 (1) 
He has obtained the solution of (4, 4) equation as  

𝑒μ =
4𝑅2

 𝑒𝑐𝑟2+𝑒−𝑐 2
     (2) 

with 𝑅2 = 3/8𝜋𝜌 and 𝜌 = 𝜌0 + 3𝑝, where 𝜌
0
 is the proper 

density (Eddington, 1924), 𝑒𝑐 is an arbitrary constant, while 

𝜌 = 𝜌0 + 3𝑝 is regarded as a constant in his analysis. His 

equation (4,4) is a second order equation. The (4,4) equation 

is an equation which has −8𝜋𝑇4
4
 
term on one side of Wyman 

equation. It will have two constants of integration in the 

general solution and hence the solution obtained by Wyman 

(1946), though exact, is only a particular solution of (4, 4) 

equation, since it contains only one constant of integration, 

namely 𝑒𝑐 . 

GENERAL SOLUTION OF (4, 4) EQUATION 

It is possible to get the second constant of integration by 

using Lemma given below. 

Lemma: If 𝑒𝜇 is a solution of the (4, 4) equation of Wyman 

then any constant multiple of 𝑒𝜇 is also a solution of the same 
equation.  

Proof: Suppose 

 𝑒μ = 𝑓 𝑟      (3) 

then 

 𝜇′𝑒𝜇 = 𝑓′  𝑟     (4) 

and therefore 

𝜇′ =
𝑓 ′  𝑟 

𝑓 𝑟 
    (5) 

Now, if we put 

𝑒μ = 𝑘𝑓(𝑟)   and    𝑒𝜇𝜇′ = 𝑘𝑓′(𝑟) (6) 

as we know  

𝑒𝜇 8𝜋𝜌 = 𝜇′′ +
𝜇′2

4
+

2𝜇′

𝑟
   (7)  

mailto:nikou@um.edu.my
file:///H:\1-Fundamental%20Journals%20(IJFPS-IJFPSS)\1-Fundamental%20Journals%20%20(IJFPS-ISFPSS)%20March%202012\1-IJFPS\2-Year%202-2012%20%20IJPFS\2012-%20N2%20(IJFPS)\29-Bijan\7-%20Final\bijan_nikou@yahoo.com


IJFPS, Vol. 2, No.4, pp. 61-63 , Dec, 2012 B. Nikouravan 

 

62 

 

and therefore 

 μ′ =
𝑓′(𝑟)

𝑓(𝑟)
     (8) 

Hence 𝜇′ ,  𝜇′2 and 𝜇′′  which occur in RHS of (4, 4) 

equation of Wyman are not altered by putting 𝑒𝜇 = 𝑘𝑓(𝑟). 

Therefore using this lemma we put  

𝑒μ =
4𝑅2𝑘2

 𝑒𝑐𝑟2 +𝑒−𝑐 2      (9) 

where 𝑘2 is a  numerical constant so that we now have two 

constants of integration namely 𝑘2 and 𝑒𝑐. These two 

constants can be determined using continuity of 𝑒μand 

∂ 𝑒μ / ∂𝑟 at the boundary  𝑟 = 𝑎. Latter condition may not 
be necessary. This condition was suggested to us by 

Newtonian approximation given by Eddington in Eq (46.2) 

(Eddington, 1924). Eddington (1924) in Eq (46.5) has shown 

that the following metric 
  

𝑑𝑠2 = − 1 + 2𝛺  𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2 +  1 − 2𝛺 𝑑𝑡2

        (10) 

gives Newtonian approximation and 𝛺 is approximately 

Newtonian potential. Continuity of 𝑒𝜇 and its derivative gives 

𝑒𝑐 =  
𝑚

2𝑎3
 

1

2
   (11) 

and 

𝑘 =
1

𝑅
  

𝑎3

2𝑚
 

1

2
 1 +

𝑚

2𝑎
 

3
    (12) 

Since 

𝑅2 =
3

8πρ
    (13) 

therefore 

𝑘 =  
4πρ𝑎3

3𝑚
 

1

2
 1 +

𝑚

2𝑎
 

3

   (14) 

so that 𝑘 ≅ 1. Also it can be seen that 𝑒𝜈 given by Wyman, 

namely  

𝑒ν =  
𝐴𝑟2+𝐵

𝑒𝑐𝑟2+𝑒−𝑐
 

2

     (15) 

has already two constants of integration and hence is a 

general solution. 

RESULT AND DISCUSSION 

Although we have found the value of the second constant 

of integration  𝑘2 by matching ∂ 𝑒μ / ∂𝑟 at 𝑟 = 𝑎, there is 
nothing in Einstein’s equation which makes it necessary to 

match the derivative of 𝑒𝜇 at r = a.  Hence 𝑘2 can have any 

numerical value, excluding negative value because 𝑒𝜇 is a 

potential and hence 𝑒𝜇 has to be real.  In particular we can 

have 𝑘2 → ∞ and we can show that the pressure tends to zero 
using the Eq (1.1) of (Wyman, 1946).   

Hence there can be a static sphere of dust according to 

Einstein. This is also corroborated by the solution 𝑒𝜇, Eq(1.8) 

of (Wyman, 1946) which holds well for 𝑃 = 0 because in 

that case 𝑅2 = 3/8πρ
0
 instead of  𝑅2 = 3/8πρ. Further the 

parameter of  𝑘2 can have any positive value and starting 
from 0 onwards, so that the pressure is left undecided. It is 

interesting to note that pressure is given by Eq(72.4) 

(Eddington, 1924) in the case of anisotropic coordinate 

system and is given by the equation. 
 

 𝑃 =  
α

8π
  

3

2
 1−α𝑟2 

1
2 − 

3

 2
 1−α𝑎2 

1
2

3

2
 1−α𝑎2 

1
2 − 

1

2
 1−α𝑟2 

1
2

      (16) 

 

Also Kelkar and Shrivastav (1999) have found the pressure 

according to Newton’s theory.  They have used the relation  
 

𝑉 =
2πρ  3𝑎2−𝑟2 

3
       (17) 

and 
∂𝑉

∂𝑟
=

1

ρ

∂𝑃

∂𝑟
    (18) 

giving  

𝑃 =
2πρ2 𝑎2−𝑟2 

3
      (19) 

so that the pressure is given uniquely.  Another interesting 

point in this regard is the fact that Einstein has converted the 

hydrodynamic equation 𝑇𝑖,𝑘
𝑘 = 0 of the general relativity 

(𝐺𝑅) into an identity  𝑇𝑖 ,𝑘
𝑘 ≡ 0. But Einstein’s field equation 

for anisotropic line element can be solved (as will be shown 

in the papers to follow) without using the equation  𝑇𝑖,𝑘
𝑘 = 0. 

If we put pressure 𝑃 = 0 in the solution of the anisotropic 

case, we can still get the solution of field equation. Hence for 

anisotropic line element also there can be static sphere of dust 

according to Einstein. These anomalies obviously can be 

avoided by taking 𝑇𝑖,𝑘
𝑘 = 0  as an independent equation of 𝐺𝑅 

and making the field equation different from Einstein’s 

equation.  This has been done by Kelkar and Shrivastav 

(1999) by proposing two new field equations as 

 

(i)  𝑇𝑖,𝑘
𝑘 = 0      (20) 

(ii)   𝑅𝑖
𝑘 −

1

2
𝑔
𝑖
𝑘𝑅 = 4πρ

0
𝑔
𝑖
𝑘 + η

𝑖
𝑘   (21) 

 

where  

η𝑖𝑘 = 4π𝑃  4
𝑑𝑥 𝑖

𝑑𝑠

𝑑𝑥𝑘

𝑑𝑠
− 𝑔𝑖𝑘     (22) 

 

so that 𝑔𝑖𝑘η
𝑖𝑘

= 0 and pressure is negligible as compared 

with proper density 𝜌
0
. Hence 

 

𝑅𝑖𝑘 ≅ −4𝜋𝜌
0
𝑔𝑖𝑘   (23) 

and 

𝑅44 ≅ −4𝜋𝜌
0
𝑔

44
≅ −4𝜋𝜌

0
  (24) 

 

This brings about Newtonian approximation.  

CONCLUSION 

Einstein’s theory predicts that there can be static sphere of 

dust considering both isotropic and anisotropic metric line 

element which means that the theory is not giving the results 

which gives Newtonian approximation in the case of rotation 

and radial motion of a star. We can get Newtonian 

approximation by considering  𝑇𝑖,𝑘
𝑘 = 0 as a separate equation 

and modifying Einstein’s equation as given in result and 

discussion.
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