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ABSTRACT  
 

Cosmology is currently facing some major challenges. In addition to dark matter and dark energy, the issue of ‘impossible’ 

galaxies has been brought to the fore by the James Webb Telescope. Something simple eludes us, and the various problems 

mentioned are interrelated. Our proposition is that, on the cosmological scale, it is appropriate to take a value of the speed of 

light 𝑐𝑐 lower than its standard value 𝑐0 in vacuum. This defines an optical index 𝑛𝑐 = 𝑐0 /𝑐𝑐. We account for this ‘refringence’ 

by a Shapiro effect extended to the scale of the universe (use of Schwarzschild metric), described by its average density 𝜌𝑢 and 

its equivalent gravitational radius 𝑅𝑢. Remarkably, universes with indices greater than two are entirely conceivable, and their 

characteristics are close to those we determine for our own. The velocities 𝑣 of celestial objects are estimated from redshifts in 

ratios of the type 𝑣/𝑐, where the speed 𝑐 of light is usually taken to be equal to 𝑐0. With an equal 𝑣/𝑐 ratio (all things considered, 

only the 𝑣/𝑐 ratio has any meaning), dividing 𝑐0 by a certain factor 𝛼 lowers the velocities 𝑣 without postulating the existence 

of dark matter nor dark energy. Taking into account the problems cited earlier suggests a value of α close to 2.4. We are led to a 

lengthening of the age of the universe: it could reach 33 billion years. This would allow it to host in its relatively young phases 

objects that are already old and structured. 
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INTRODUCTION 

Cosmology is currently facing some major challenges. Since 

the James Webb Space Telescope (JWST) came into service, 

the question of ‘impossible’ galaxies (is the universe too 

young?) has been added to those of dark matter and dark 

energy (what are they made of, given that they make up some 

95% of the Universe's matter and energy content?).  

Among a vast literature, see, on the second subject, Zwicky 

(1933) and Rubin and Ford Jr (1970), on the third, Perlmutter, 

Turner, and White (1999), and on the first, Boyett et al. (2024), 

as well as Gupta (2023) where numerous references can be 

found. 

In the present work, we would like to put the following 

conjecture to the test: there is no need for new detectors nor 

new equations (Another way of saying: let us make do with the 

data at our disposal, and keep as far as possible the tried-and-

tested theories on which we have built our representation of 

the world.), something simple eludes us, and the various 

problems mentioned are interrelated.  
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The proposition we are putting on the table is that, on the 

cosmological scale, we need to take a value for the speed of 

light c that is lower than its standard value 𝑐0 in a vacuum. For 

this, we will write 𝑐 = 𝑐𝑐  (subscript c for ‘cosmological’). This 

defines an optical index 𝑛𝑐 = 𝑐0 /𝑐𝑐. We account for this 

refringence by a Shapiro effect extended to the scale of the 

universe, described by its average density 𝜌𝑢 and its equivalent 

gravitational radius 𝑅𝑢. The light velocity slowdown results 

from the cumulative influence of length and time variations in 

a non-Euclidean metric. 

As it happens, the velocities 𝑣 of celestial objects are estimated 

from redshifts in ratios of the type 𝑣/𝑐, where the speed of 

light 𝑐 is taken to be equal to 𝑐0. With an equal 𝑣/𝑐 ratio (only 

the ratio has any meaning), by dividing 𝑐0 by a certain factor 

𝛼, we lower the velocities 𝑣 without postulating the existence 

of dark matter nor dark energy.  

If we accept this approach, we are also led to a lengthening of 

the age of the universe. Taking the above problems into 

account suggests a value of 𝛼 close to 2.4. Preliminary use of 

the Schwarzschild metric (also used for the Shapiro effect) 

shows that we can hold an index 𝑛𝑐 equal to the factor 𝛼 for 

values of mean density and radius of the universe consistent 

with the ranges of values accepted today (𝜌𝑢 in the interval 

10−28 − 10−26 kg/m3, 𝑅𝑢 to be counted in tens of billions of 

light-years). 

Our plan is as follows. In section 2, we will take a look at the 

reduction in the speed of light on a cosmological scale, by 

calculating the equivalent refractive index 𝑛𝑐 (extended 

Shapiro effect), and giving a first indication of the values of 

the densities and sizes of the universe: we will see that it is 

indeed possible to lower 𝑐 on this scale. We will discuss the 

different ways of talking about the speed of light within the 

framework of general relativity.  

In the third and fourth sections, we will look at the problems 

of dark matter and dark energy: what factor α makes it possible 

to bring the excessive speeds that make them postulate down 

to a level consistent with our usual physical laws, dividing the 

speed of light 𝑐 that brings us the information? Dark matter 

section will review several situations where it is postulated: 

galaxies and galaxy clusters, gravitational lensing, cosmic 

microwave background.  

We will then compare (section 5) the results of sections 3 and 

4 with those of section 2: fortunately, the two approaches can 

be brought together, by identifying the 𝛼 factor with an optical 

index 𝑛𝑐, calculable and of value 2.4 for plausible choices of 

density and universe size that we can identify.  

We will examine the consequences of our approach on the age 

of the universe, with its possible upward revision, and the view 

to be drawn from it on the case of impossible galaxies.  

We end (section 6) with a few concluding words: our 

hypothesis stands up to initial tests. On it we are building what 

is at this stage only a first iteration and a framework for re-

examining models; due to the coupling between theoretical 

approaches, observations and measurements (object distances, 

redshifts, Hubble constant, size and age of the universe, 

densities, etc.) a readjustment of the whole representation of 

our universe is required. At this preliminary stage, we have not 

reviewed all the tensions that are appearing in cosmology 

today (see some effort in Guy (2022). Furthermore, and in this 

context, the values of physical quantities announced here 

should not be given a precision they do not have. 

2. A REFRACTIVE UNIVERSE 

Shapiro effect on the scale of Universe. Calculation of the 

equivalent index 

The Shapiro effect (1964) is manifested by an increase in the 

travel time of light, due to the effect of a mass intervening 

along its path. This is due as much to the lengthening of the 

path in a space curved locally by matter, as to the 

consequences for clocks of a non-Euclidean metric. The result 

can be seen in comparison with a travel assumed to take place 

in a vacuum in the absence of matter; or in comparison with a 

Euclidean distance projected towards distant objects, which is 

the case with the use of standard candles, or angular distances 

(In the remainder of the text, the distances r used will be such 

distances.) using our local standards based on 𝑐 = 𝑐0.  

This effect, that must be calculated taking into account all the 

masses in the universe that influence the path from a distant 

object, leads us to understand that the equivalent ‘speed’ of 

light on the cosmological scale is, in any case, strictly less than 

𝑐0. The lengthening is conveniently expressed by an equivalent 

optical index of refraction, greater than one. On the scale of 

the universe, the path of a photon, reaching us from distances 

to be counted in light-years up to billions of light-years, is 

slowed down by all the masses encountered. These masses are 

of different sizes, and we can replace them, at this scale, by an 

equivalent density of matter. 

A calculation is possible using a non-Euclidean metric within 

the framework of general relativity. As a preliminary 

approach, we choose the Schwarzschild (1916) metric. The 

simplest, it is used by the authors to determine an optical index 

equivalent to a matter distribution, in particular for the effect 

of a single mass. It has the advantage that both its temporal and 

spatial coefficients are modified, whereas for the other metrics, 

only the spatial term is affected (by the scaling factor 𝑎(𝑡)). 

This makes things more balanced, as both time and space are 

involved in the estimates of the various quantities we handle. 

The optical analogy is not new; it has been proposed, at least 

to first order, by many authors:  Möller (1952), Feynman 

(1963), Landau and Lifschitz (1970), Evans, Nandi, and Islam 

(1996), Straumann (2000), Nandi and Islam (2009), Sarazin, 

Couchot, Djannati-Ataï, and Urban (2018). Szondy (2003) 

discusses Janossy’s book (1971) where an ether-based 

gravitation theory (with optical properties) is shown to be 

equivalent to general relativity. Page and Tupper (1968) 

propose scalar gravitational theories with variable velocity of 

light. 

The Schwarzschild metric implements directly accessible 

parameters such as masses and their distances, and its writing 

requires no special assumptions about the evolution of the 

universe. By contrast, in other metrics, the parameters are 

engaged in circularities involving choices about the expansion 

of the universe. In the FLRW (Friedmann Lemaître Robertson 

Walker) metric information on masses and distances are not 

provided, but density parameters 𝛺𝑖 (curvature, ordinary and 

dark matter, vacuum energy, radiation), which are themselves 

subject to different assumptions.  

This metric is based on a scaling parameter 𝑎(𝑡): in this case, 

we manipulate comoving distances, the physical meaning of 

which to link to a global optical index is more problematic.  

De Sitter’s metrics, on the other hand, involve the 

cosmological constant (linked to dark energy), which is 



IJFPS, Vol 14, No 2, pp 24-40, June, 2024 Bernard GUY 

 

 

26 

 

precisely what we want to dispense with. In a second step, we 

will have to take the expansion of the universe into account. 

For a problem with spherical symmetry, the Schwarzschild 

metric can be read, in spherical coordinates: 

 

𝑑𝑠2 = 𝑎𝑐2𝑑𝑡2 − 𝑏(𝑑𝑟2 + 𝑟2 𝑑𝜃2 + 𝑟2𝑠𝑖𝑛2𝜃𝑑𝜑2) 

(1) 

 

with 

 

𝑎 = (1 −  
2𝐺𝑀

𝑟𝑐2 )       (2) 

 

and 

 

𝑏 =  (1 −  
2𝐺𝑀

𝑟𝑐2 )
−1

      (3) 

 

The coefficients of the metric involve the influential mass M 

seen at distance r. The value c is the usual standard value 𝑐0 

(in the absence of a subscript in the following, 𝑐 = 𝑐0). Within 

the framework of the cosmological hypothesis of isotropy and 

homogeneity of the universe, we will not need to take into 

account possible variations in angles 𝜃 and 𝜑, i.e. 𝑑𝜃 = 0, 

𝑑𝜑 = 0. Writing that the propagation of light is defined by, 

and respects, 𝑑𝑠2 = 0 (a mathematical property expressing the 

second postulate of special relativity, extended to general 

relativity in non-Euclidean space), we derive from the 

preceding relations 

 
𝑑𝑟2

𝑑𝑡2 =
𝑐2

𝑛2        (4) 

 

Where we define the optical index 𝑛 equivalent to the 

gravitational effect of the mass 𝑀 at a distance 𝑟 from the 

observer. We have 

 

𝑛2 =
𝑏

𝑎
= (1 − 

2𝐺𝑀

𝑟𝑐2 )
−2

     (5) 

 

From which we derive: 

 

𝑛 = (1 − 
2𝐺𝑀

𝑟𝑐2 )
−1

      (6) 

 

The previous value applies to the effect of a single mass 𝑀; 

but we are looking for a property of the universe as a whole, 

and we have to take into account all the masses 𝑚𝑖 that 

populate it, at distances 𝑟𝑖. These include interstellar dust and 

gas as well as stars, galaxies, galaxy clusters and so on. 

Summing up all these masses, we get 

 

𝑛 = (1 − 
2𝐺

𝑐2
∑

𝑚𝑖

𝑟𝑖
𝑖 )

−1
       (7) 

 

Where 𝑖 subscript runs through all the particles of matter, from 

the smallest to the largest. This can be written so because it is 

a summation of scalars, not vectors. But we obviously lack 

complete knowledge of the distribution of matter in the 

universe.  

We can attempt a calculation (which will be accurate on an 

ensemble scale) using two parameters thought to give an 

adequate account of the universe’s properties: - the average 

density of the universe 𝜌𝑢, and – its ‘equivalent’ gravitational 

radius 𝑅𝑢, responsible for the gravitational potential at the 

point where the observer is located. The pair (𝜌𝑢 , 𝑅𝑢) 

determines the total influential mass of the universe at a certain 

average distance. In a first approach, we assume that this 

makes sense, despite the expansion of the universe; the 

average density of the universe is commonly referred to (see 

Copi, Schramm, and Turner (1995)), even though universe is 

expanding, and the same for its Hubble radius.  

Let us sum the previous expression over the spherical volume 

of the universe of radius 𝑅𝑢 around the observer. We then 

have: 

 

∑ (
𝑚𝑖

𝑟𝑖
)𝑖 ≈ ∫ (

𝜌𝑢𝑑𝑉

𝑟
)

𝑅𝑢

0
      (8) 

 

and 

 

𝑛 = (1 −  
2𝐺

𝑐2 ∫  
 𝜌𝑢𝑑𝑉

𝑟

𝑅𝑢

0
)

−1

     (9) 

 

Equation (9) expresses the change of scale we propose by 

referring to a continuous rather than a discrete summation 

(cosmological scale and cosmological principle). Local effects 

(such as the deviation of light by a single star like the sun, used 

as a test for the Schwarzschild metric) are incorporated. Using 

polar coordinates, the integration volume around the observer 

is written as 𝑑𝑉 = (4𝜋𝑟2)𝑑𝑟 (corona of thickness 𝑑𝑟 located 

at distance 𝑟). By transferring to the previous relationship, the 

𝑟 in the numerator is simplified and the part to be integrated 

remains: 

 

∫  (
𝜌𝑢

𝑟
)

𝑅𝑢

0
𝑑𝑉 = ∫  (4𝜋𝜌𝑢𝑟)𝑑𝑟

𝑅𝑢

0
   (10) 

 

Whose value is 

 

2𝜋𝜌𝑢𝑅𝑢
2        (11) 

 

It then comes  

 

𝑛𝑐 = (1 − 
4𝜋𝜌𝑢𝐺𝑅𝑢

2

𝑐2 )
−1

       (12) 

 

Where we call 𝑛𝑐 the index on the cosmological scale. 

Equation (12) can be applied to any point in the universe; it 

includes the influence of stars close to the point of calculation, 

corresponding to higher densities and on a very small scale 

compared to that of the universe where 𝑛𝑐 is evaluated. What 

is important is homogeneity and isotropy on different scales, 

despite differences in densities (or distances between objects). 

Isotropy and homogeneity are already guaranteed on the scale 

of stars in a galaxy (light-years) (Actually, strictly speaking, 

the homogeneity of the universe is not guaranteed until we 

reach the scale of several 𝑀𝑝𝑐 (at lower scale, there are large 

voids between galaxy superclusters). We do not discuss the 

questions of gauge invariance that may arise when using the 

Scharzschild metric in our calculation of the cosmological 

index. The observables appear to us to be distances and 

densities, estimated by the usual methods. Gauge 

transformations may concern the metric's coefficients, as a 
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result, for example, of coordinate axes rotations or the choice 

of length scales.). Note that, in the Schwarzschild metric as 

used, we do not need to take into account the wavelength shifts 

caused by the ‘Einstein effect’ (gravitational redshift for light 

arriving from a zone of higher gravitational potential). Because 

we do not have a gravitational potential gradient, we are at a 

scale where n is the same everywhere. 

 

FIRST EXPLORATION 

Our aim in this work is not to say: ‘This is the density; this is 

the radius of our universe’. It is more simply to ask the 

question: ‘Is a universe with a cosmological index of the order 

of 2.4 conceivable for amplitudes 𝛥𝜌 and 𝛥𝑅 that frame the 

values of the universe that hosts us?’ As a result of the 

circularities between models (choice of laws, choice of 

parameters, which, as we propose, will have to evolve), 

observations and measurements, our universe itself cannot 

already be characterized by defined parameter values, but by 

intervals. Equation (12) provides a basis for discussion of the 

relationships between the value of the index 𝑛𝑐 and those of 

the density and size parameters of the universe. It can also be 

written as: 

 

𝜌𝑢𝑅𝑢
2 =  (

𝑛𝑐−1

𝑛𝑐
) (

𝑐2

4𝜋𝐺
)      (13) 

 

Let us use this last relation (It is interesting to note that A. 

Einstein (Lorentz, Einstein, & Minkowski, 1922; 

O’Raifeartaigh, O’Keeffe, Nahm, & Mitton, 2017), in his 

paper on a static universe of radius 𝑅 and matter density 𝜌, 

found the relationship 𝜌𝑅2  =  𝑐2/4𝜋𝐺, identical to ours to 

within a factor (𝑛𝑐 − 1)/𝑛𝑐. It corresponds to a universe 

where, according to our analysis, the index 𝑛𝑐 is infinite and 

light cannot propagate on this scale (see below). This is 

actually what Einstein did analyze: ‘light can never leave the 

system’.) to represent the conceivable refractive universes in 

an a priori general way, and let us position the values of 𝑛𝑐 in 

a space (𝑅𝑢,  𝜌𝑢). We will adopt a logarithmic representation 

(base 10) where the 𝑛𝑐 iso-index curves are straight lines of 

equation: 

 

𝑙𝑜𝑔𝜌𝑢 + 2𝑙𝑜𝑔𝑅𝑢 = (𝑙𝑜𝑔
𝑛𝑐−1

𝑛𝑐
) + (𝑙𝑜𝑔

𝑐2

4𝜋𝐺
)   (14) 

 

They have a slope equal to -2. For the universes we will be 

dealing with, it is appropriate to express distances in billions 

of light-years, i.e. 9.46 × 1024 m (1 light-year = 9.46 ×
1015m). If 𝑅𝑢

′  is the value of 𝑅𝑢 in billions of light-years, we 

have 𝑅𝑢 = 𝑅𝑢
′ × 9.46 × 1024. Carrying this expression for 𝑅𝑢 

into (14), we get 

 

𝑙𝑜𝑔𝜌𝑢 + 2𝑙𝑜𝑔𝑅′𝑢 = (𝑙𝑜𝑔
𝑛𝑐 − 1

𝑛𝑐

) + (𝑙𝑜𝑔
𝑐2

4𝜋𝐺
)

− 2 log(9.46) − 2 × 24 

(15) 

 

We carry out the various calculations with 𝑐 = 𝑛0 = 3 × 108 

m/s (inherited from the Schwarzschild metric in its original 

expression, referring to ‘local’ standards) and 𝐺 = 6.67 ×
10−11 (in SI unit). We are primarily interested in orders of 

magnitude, and the significant digits used in the calculations 

have a simple intermediate and relative value. We have 

𝑙𝑜𝑔 (𝑐2/4𝜋𝐺) = 26.03 and the constant part of the second 

member of equation (15) is equal to 26.03 − 1.95 − 48 =
−23.92. This gives: 

 

𝑙𝑜𝑔𝜌𝑢 + 2𝑙𝑜𝑔𝑅′𝑢 = (𝑙𝑜𝑔
𝑛𝑐−1

𝑛𝑐
) − 23,92   (16) 

 

In the following, we will write 𝑅𝑢 or 𝑅′𝑢 indifferently, 

knowing that the radii are expressed in billions of light-years. 

Which domain of space (𝑅𝑢, 𝜌𝑢) should we explore? Let us 

study a field of a priori plausible values for universes 

encompassing the one we inhabit. 

The range of orders of magnitude of the density of matter 𝜌𝑚 

can be assessed by inspection of the quantity of gas, dust, stars, 

galaxies, etc., observed directly or indirectly, and its 

distribution as a function of the assumed size of the domains 

examined. Today, it takes account of possible dark matter, 

highlighted by estimates of the velocities of observed objects 

and their comparison with a priori models of behavior.  

‘Direct’ inspection taking dark matter into account leads to 

values of 𝜌𝑚 of the order of 5 × 10−27 kg/m3 (Gasparini, 

2020). This value needs to be lowered to exclude dark matter 

(estimated to be 6 times more abundant than ordinary baryonic 

matter), which is precisely what we want to avoid. Dividing 

the previous figure by 7, we obtain a 𝜌𝑚 of the order of 

7 × 10−28 kg /m3. This value is in line with that found by 

various authors such as Chardin (2018) , Copi et al. (1995), 

Gasparini (2020). 

The value of the critical density 𝜌𝑐, a function of the Hubble 

constant 𝐻(𝜌𝑐 = 3𝐻2/8𝜋𝐺) gives another indication. For 

𝐻 = 71 km/s/Mpc, 𝜌𝑐 is of the order of 10−26 kg/m3 for a 

universe age of 13.8 billion years (This value 13,8 𝐺𝑦 for the 

age of the universe represents a kind of average, taking into 

account the variability of 𝐻 and the different models and their 

density parameters 𝛺𝑖 .).  

The so-called Hubble tension shows an interval for 𝐻 of 

between 67 and 73 km/s/Mpc, which is reflected in the Hubble 

radius (to which we return later) and the age of the universe, 

between 13.4 and 14.6 billion years. The detour via the critical 

density is consistent with the total density 𝜌𝑚 (baryonic matter 

+ dark matter) via the densities 𝛺𝑖 of the different energies in 

the expansion models. With 𝛺𝑚 = 𝜌𝑚 /𝜌𝑐 = 30% (according 

to the standard 𝛬𝐶𝐷𝑀 model), we find the order of magnitude 

𝜌𝑚 = 3 × 10−27 kg/m3 close to that given just now (5 × 10−27 

kg/m3). If we restrict ourselves to ordinary matter, we arrive at 

a value just under 5.10-28 kg /m3, close to the 7 × 10−28 kg /m3 

given just now.  

All in all, we are led to an interval of between 10-26 and 10-28 

kg/m3, as a first approximation without taking into account the 

expansion of the universe, which causes it to vary slowly. In 

our present understanding, the density value of our universe is 

probably close to the lower values of this interval (of the order 

of 5 × 10−28 kg/m3; this is for ordinary baryonic matter). 

As for the size 𝑅𝑢 of a gravitationally-influenced universe 

equivalent to our own (this determines the gravitational 
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potential at our Earth observation point, given that 

gravitational influences travel at the same speed as 

electromagnetic light waves), an order of magnitude is given 

by the Hubble radius 𝑅𝐻  (derived from the value of 𝐻).  

This represents the distance light has travelled to us from the 

earliest objects in the Big Bang, taking into account the age of 

the universe (this distance refers to the date of emission of the 

light reaching us).  

The estimated age of the universe today is 13.8 billion years, 

giving a Hubble radius of 13.8 billion light-years. A different 

view of the same distant points concerns their position today 

(time at reception), given the distance they have receded as 

light was reaching us. In terms of distances, we speak of the 

cosmological horizon 𝑅𝑧 limiting the observable universe, 

which, depending on the model, is equal to several times the 

Hubble radius (e.g. 𝑅𝑧 = 45 billion light-years). From points 

beyond these distances, no signal can be received, due to the 

finite speed of light and the expansion of the universe 

(recession velocities then exceed that of light). As a first 

approximation, these different orders of magnitude of 𝑅-

radiuses are considered independently of the expansion of the 

universe.  

They are related to our local Euclidean standards, knowing that 

the detours made by light to transport images of distant 

celestial objects to us are accommodated by the index 𝑛𝑐. 

Thus, we can frame likely 𝜌𝑢 in the range 10−26-10−28 kg/m3 

and radii 𝑅𝑢 of the order of magnitude equal to tens of billions 

of light-years. As a first step, in a ‘broad’ way, we will take 

densities and sizes of universes largely encompassing the 

previous values: sizes spanning four orders of magnitude, from 

100 to 103 billion light-years, densities covering five orders of 

magnitude from 10−29 to 10−24 kg/m3.  

For optical indices, let us choose three degrees within the range 

of possible values from 1 to infinity: 𝑛𝑐 = ∞, 𝑛𝑐 = 2.4 and 

𝑛𝑐 = 1.2.  As for the lowest values, 𝑛𝑐 = 1 is not obtained, 

except, asymptotically, for densities tending towards zero (as 

soon as we have matter, the index is greater than 1, as the 

formulas of the Shapiro effect tell us again) and/or for 

universes of size also tending towards zero. For an infinite 

value of the index, the term 𝑙𝑜𝑔((𝑛𝑐 − 1)/𝑛𝑐 ) in equation 

(16) cancels out, leaving equation 

 

𝑙𝑜𝑔𝜌𝑢 + 2𝑙𝑜𝑔𝑅′𝑢 = −23.92    (17) 

 

For values of 𝑛𝑐 equal to 1.2 and 2.4, the terms 𝑙𝑜𝑔((𝑛𝑐 −
1)/𝑛𝑐 )  are respectively equal to - 0.778 and - 0.234, and we 

have the two equations: 

 

𝑙𝑜𝑔𝜌𝑢 + 2𝑙𝑜𝑔𝑅′𝑢 = −24.70    (18) 

 

And 

 

𝑙𝑜𝑔𝜌𝑢 + 2𝑙𝑜𝑔𝑅′𝑢 = −24.15    (19) 

 

Fig. 1 shows the equal value lines for 𝑛𝑐 = 1.2, 𝑛𝑐 = 2.4 and 

𝑛𝑐 infinite, in the plane (𝑅𝑢, 𝜌𝑢).  They form an oblique scarf, 

highlighted in color on the figure; the band is bounded on the 

upper right by 𝑛𝑐 infinite. Beyond this, light does not 

propagate on a cosmological scale; for the lower zone, the 

index slowly decreases towards 1 at infinity in the bottom left. 

Let us now restrict the values of universe sizes and densities to 

get even closer to our own: dimensions in the tens of billions 

of light-years (let us take the interval 10 − 100 × 109 light-

year) and densities in the interval 10−26, 10−28 kg/m3. This 

time, we are in a tighter neighborhood around the Hubble 

radius (13.8 billion light-years), with densities closer to the 

critical density (10−26 kg/m3) and average density (5 × 10−28 

kg/m3), as reviewed above. These choices make it possible to 

draw two colored bands on the figure, for sizes and densities 

respectively. 

Let us take a look at how the three bands of indices, sizes and 

densities selected just now are positioned in relation to each 

other. A priori, we might expect a random distribution, the 

most likely being one in which the three bands' intersections 

define a triangle of any kind. In other words, the zone of 

‘strong’ indices (around 2) of interest to us has no reason to 

correspond to any of the universes we have selected; either 

these universes are too small or too large, or they are too dense 

or too sparse. 

As it happens, no. Remarkably, the zone of strong indices lies 

in the middle of the zone of plausible universes. Or, 

conversely, the zone of selected universes contains the zone of 

strong indices.  We observe an ‘improbable’ fit, in a single 

region, of the three overlapping sectors: strong indices, 

‘expected’ universe densities and sizes. 

Let us leave it at that for now, and remember that, interestingly 

enough, universes with indices greater than two are not 

unreasonable. We will come back to this after Section 4. 

 

 

 
Figure 1. Representation of universes in the plane (𝑅𝑢, 𝜌𝑢). 

Representation of universes characterized by their average 

density 𝜌𝑢 (in the range 10−24, 10−29 kg/m3) and their 

equivalent gravitational radius 𝑅𝑢 (in the range 1 to 103 billion 

light-years). Logarithmic scales.  A reduced window closer to 

our universe: (10−26, 10−28 kg/m3) and (10 to 102 billion 

light-years) has been highlighted by coloring. The iso-index 

curves are straight lines, of which we have shown three: 𝑛𝑐 

infinite, 𝑛𝑐 = 2.4 and 𝑛𝑐 = 1.2, also defining a colored band. 

Remarkably (see text), the three zones overlap, demonstrating 

the possibility that indices greater than two are relevant to our 

universe on its own scale. 
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Two ways of talking about the speed of light 

Is the postulate that ‘𝑐 = 𝑐0 in vacuum is a universal constant’ 

called into question by talking of a reduced speed of light in 

the cosmological vacuum? In response, let us point out that 

two non-contradictory points of view on the speed of light, 

corresponding to two scales of observation, are adopted. 

First of all, there is the local world of terrestrial observers. The 

word local extends to the space around us, up to the sun and 

the solar system (150 million km and beyond). On this scale, 

we relate to a speed of light ‘fixed’ by convention at the value 

c0. This is the value used in special relativity and its Euclidean 

space, where we describe increments of space and time by the 

small amplitudes 𝑑𝑥, 𝑑𝑦, 𝑑𝑧 and 𝑑𝑡, linked as to their 

measurements by the relation 𝑑𝑥2  + 𝑑𝑦2  +  𝑑𝑧2 =  𝑐0
2𝑑𝑡2. 

For objects distant from the observer, it is the right thing to do 

relating everything to his space and time standards based on 

the reference 𝑐0.  

Angular distances, or luminosity distances in cosmology, 

correspond, as we have said, to a projected distance in a 

supposedly Euclidean universe like our own, but, because of 

the effect of the non-Euclidean metric, they do not refer to the 

actual path of the light that reaches us. Following the logic of 

the 1983 definition of the metre (corresponding to a certain 

travel time of light at its decreed speed 𝑐0 in a vacuum), it 

would seem natural, for the journey of light from objects of 

evaluated distances 𝑑, to imagine durations given by 𝑡 = 𝑑/𝑐0. 

This is what we commonly do when we talk quantitatively 

about the ‘past’ we contemplate when looking at the sky. But, 

because of the ‘refringence’ calculated above, we have to 

break this quantitative correspondence with c0. For distant 

objects on the scale of the universe, we no longer use the local 

speed of light 𝑐0 but 𝑐𝑐 and the durations are lengthened 

according to 𝑑/𝑐𝑐. We then need to define the translation 

coefficients between the two scales (local / cosmological), and 

the second way of talking about the speed of light comes into 

play as follows. 

The cosmological point of view corresponds to a scale where 

the representative elementary volume has a side equal to the 

light year, larger by a factor of 105 than the previous local scale 

(the distance to the sun). It is as if we could look at the universe 

from the outside, with the appearance of a homogeneous fluid. 

On this scale, relating it to the 𝑐0 of our base, light travels at a 

speed 𝑐0/𝑛𝑐. This is the same as in a refractive medium, where 

the ‘macroscopic’ speed is different from the local speed. In 

water, for example, the speed of the photon remains 𝑐0 

between atom-to-atom interactions on the nanometric scale, 

but it would be a mistake to assign this value to light arriving 

from millimeter to hectometer distances, as it is slowed down 

by interactions with the electrons of the atoms encountered 

(absorption/excitation-de-excitation/re-emission delay). 

Similarly, the light we receive from celestial objects is always 

𝑐0 in its elementary paths, but 𝑐𝑐 on the scale of the overall 

path, due to interactions - this time gravitational (taken into 

account by a non-Euclidean metric)-with all the matter it 

encounters.  

Note that in the case of the universe, there is no interface with 

an outside world; we are inside. But that does not mean that 

we cannot consider two scales and two speeds. In short, 

mathematical formalism enables us to distinguish between:  

1) the local scale, in the tangent plane to the overall curved 

space; here we define the increments of distances and 

durations 𝑑𝑥, 𝑑𝑦, 𝑑𝑧, dt measured by the standard of motion at 

speed 𝑐0.  

2) space in its cosmological dimension, where lengths are 

measured by weighting 𝑑𝑥, 𝑑𝑦, 𝑑𝑧, 𝑑𝑡 by the coefficients 𝑔𝑖𝑗 

of a metric. Their effect is responsible, via the writing of 

𝑑𝑠2 = 0, for a megascopic speed of light of less than 𝑐0. 

Captive light 

The two previous levels of scaling can be seen in what is said 

about the speed of light in black holes. We continue to speak 

of c0 locally, but if we step back, we can say that, when trying 

to cross outward the event horizon, it is as if the speed of light 

could be cancelled out (seen from the outside, it is not equal to 

c0).  

If we return to the optical comparison, we can calculate an 

optical index for the Schwarzschild black hole.  For this 

metric, the index is: 

 

𝑛 = (1 −  
2𝐺𝑀

𝑟𝑐2 )
−1

      (6) 

 

For the value of the horizon radius 𝑟 = 2𝐺𝑀/𝑐2, we have an 

asymptote with n tending towards infinity; the speed of light 

tends towards zero. For the universe as a whole, we find the 

situation seen above, for straight lines in the plane (𝑅𝑢, 𝜌𝑢) 

along which 𝑛𝑐 is infinite (Fig. 1).  

The universe then prevents the progression of light on its 

megascopic scale (whereas locally it is always equal to 𝑐0). 

With 

 

𝑛𝑐 = (1 − 
4𝜋𝜌𝑢𝐺𝑅𝑢

2

𝑐2 )
−1

     (16) 

 

𝑛𝑐 is infinite for 𝜌𝑢𝑅𝑢
2 = 𝑐2/4πG. We are led to a ‘horizon’ 

discussion, to be distinguished from other horizons relating to 

the expansion of the universe. 

The difference between the two points of view (‘local’ and 

cosmological) can be seen in the way the aforementioned 

authors use the equivalent optical index obtained from the 

Schwarzschild metric, following a first-order approximation. 

Taking equation (6), we have 

 

𝑛(𝑟) =  (1 −  
2𝐺𝑀

𝑟𝑐2 )
−1

≈  (1 +  
2𝐺𝑀

𝑟𝑐2 )   (20) 

 

in a development limited to first order. For ‘local’ use, the 

2𝐺𝑀/𝑟𝑐2 term is negligible in front of 1 and we use the 

approximate formula 

 

𝑛(𝑟) =  (1 +  
2𝐺𝑀

𝑟𝑐2 )       (21) 

 

The latter expression is frequently used in the literature, 

seeming to have forgotten that it is an approximation. It is the 

one that has successfully passed tests on the ‘local’ scale of the 

solar system. On the contrary, when summed to the scale of 

the universe, the 𝐺𝑀/𝑟𝑐2 term is not negligible in front of 1, 

and is even of order zero!  

The considerations in this first section (about the speed of light 

on a cosmological scale), may be extended to what is said 

about the speed of propagation of gravitational interactions 

(whether gravitons or gravitational waves). It can be said that 
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the latter also propagate at the speed 𝑐𝑐 = 𝑐0 /𝑛𝑐 , which 

corresponds to what has been observed: for various events 

detected in recent years by gravitational wave detectors, the 

arrivals are simultaneous with those of light waves detected by 

conventional means. Some authors have even pointed out that 

the Shapiro effect is just as effective for some as for others. 

This makes the overall approach coherent and supports the one 

we propose. 

3. DOES THE UNIVERSE HAVE A DARK SIDE? A. 

DARK MATTER 

Leaving aside general relativity and calculations of the 

equivalent speed of light on a cosmological scale, let us return 

to the problems raised in the introduction. 

Overestimated speeds 

As we have already said, the problems we are facing, before 

they concern matter and energy, are first and foremost linked 

to the way we estimate the velocities v of distant celestial 

objects, which are excessive in relation to our well-established 

laws of physics. How are these velocities established? In 

answer, they are not established by determining ratios between 

distances travelled 𝛥𝑙 and time intervals 𝛥𝑡, in the form 𝑣 =
𝛥𝑙/𝛥𝑡: they are established through ratios to the speed of light 

v/c, informed by its redshifts (the Doppler effect in the 

broadest sense) (Strictly speaking, this is not true for velocities 

evaluated by parallax variations, as we will allude to later; but 

the relational aspect discussed just below is present, albeit 

more hidden.). 

This is a general characteristic of physics based on ratios of 

magnitudes (including what concerns light), as analyzed in our 

various works (cf. (Guy, 2011, 2019, 2022). We are dealing 

with ratios 𝜏 = 𝑣/𝑐 and only these ratios are ‘true’; c is the 

speed of light. If the ‘measured’ speed 𝑣𝑚  of a distant object 

(via a 𝑐0 corresponding to our local standards) is too great and 

does not correspond to the value 𝑣𝑒 that we ‘expect’ from it, 

we need to ask ourselves the question of a smaller speed of 

light 𝑐𝑐 (on the cosmological scale) which carries us the 

information. We have the fundamental relation: 

  

τ =
𝑣𝑚

𝑐0
=

𝑣𝑒

𝑐𝑐
       (22) 

or 

 

𝑣𝑒 =
1

𝛼
𝑣𝑚         (23) 

 

With 

 

𝛼 =
𝑐0

𝑐𝑐
         (24) 

 

If dark matter is ‘demonstrated’ by excessively high velocities, 

the question is whether we can determine the same 𝛼 ratio in 

the various cases, which would bring us back to velocities in 

line with the physical laws we know, experience and measure 

(in our laboratories and the experiments within our reach, 

extended to our solar system)? We will then have to confront 

this 𝛼 factor with an 𝑛𝑐 index calculable according to the 

method set out in the second section for a universe of 

characteristics to be discussed. 

The considerations set out in the second section of this article 

would be enough to make us accept the idea of a speed of light 

below its standard value in a vacuum. But, in the course of our 

research, other, more fundamental considerations had steered 

us towards the path just outlined. They are rooted in a 

historical review and in epistemological reflections. On the 

first point, it is worth pointing out that none of the 

measurements of the speed of light (Römer, Bradley, Fizeau, 

Foucault, etc.) reveal this speed as a simple ratio between an 

interval of space and an interval of time, space and time 

assumed to be already defined and equipped with independent 

gauges. But another motion is always involved (earth's motion, 

the motion of a cogwheel, etc.) and the speed of light appears 

in a ratio of the type 𝜏 = 𝑐/𝑣 or 𝑣/𝑐 (Lehoucq & Uzan, 2005). 

If we estimate that we know 𝑣, we deduce 𝑐. The 1983 decree 

sets 𝑐 = 𝑐0 = 299,792,458 meters per second. Since then, it 

has been as if we were only thinking in terms of c, forgetting 

the fundamental relational aspect expressed in speed ratios. 

Where have all the other v's gone? What is m/s, the speed of 

one metre per second, which is not linked to any other 

phenomenon? The preceding decree is not without question! 

We have to accept being reduced to circular comparisons of 

𝑣/𝑐 ratios (particularly in cosmology); we fix a numerator or 

denominator by inevitable convention, but only the ratios have 

any meaning. 

As for the second point (epistemological considerations), the 

duality of points of view (𝑐0, 𝑐𝑐) is very much in keeping with 

a ‘relational’ rationality based on comparisons between 

physical quantities. Henri Poincaré (1902,1905) would remind 

us that we cannot say anything about space on its own (is it 

Euclidean or not?): we base its properties on matter, the 

trajectories that pass through it, compared with one another: 

we speak of a curve in relation to what we call (what we decide 

to call) a straight line, and vice versa. The same applies to 

velocities: the ratios 𝑣/𝑐 relate gravitation (for 𝑣) to 

electromagnetism (for 𝑐). This ‘solidarity’ of the two 

phenomena (gravitation / electromagnetism) cannot be 

avoided in the two terms of the ratio 𝑐0/𝑐𝑐 (nor is 𝑐0 alone 

there). The two ways of talking about the speed of light 

(referring to two different phenomena) are not contradictory, 

but complementary, and indispensable to each other in a 

comparison (See also from this point of view our work on the 

relationship between quantum mechanics and general 

relativity, Guy (2018). 

 

Dark matter in spiral galaxies 

If we want to summarize the emergence of this problem, two 

authors, (Zwicky, 1933) and Rubin (Rubin & Ford Jr, 1970), 

played a pioneering role. The first looked at galaxy velocities 

in galaxy clusters, while the second looked at star velocities in 

spiral galaxies. In both cases, values are estimated using 

Doppler shifts. Different corrections are required, depending 

on the assumed angles between star velocities and observer 

radii. If the galaxy is seen from the surface, no relative star 

motion is detected. If we view it from the edge, the movements 

of stars at different distances from the center are 

superimposed, causing confusion, especially in the denser 

inner parts. The speed of recession of galaxies as a whole, due 

to the expansion of the universe, must also be taken into 

account.  
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Finally, there may be signal disturbances of various kinds on 

the way to the observer. Based on this data acquisition work, 

Zwicky and Rubin both concluded that the observed velocities 

were too high in relation to what was expected, i.e. in relation 

to the estimated mass of the objects involved (which 

presupposes a transition between mass and velocity, using 

Newton's laws), given their luminosity and a standard link 

between luminosity and mass.  

But the question is precisely how to estimate the expected 

masses to be involved in understanding the observed 

movements. At the start of this research, the supposed missing 

mass was very large (Zwicky speaks of a factor of 100 

compared with the visible mass), but we later came to 

understand the large quantity of gas and dust present and yet 

unseen. It is now thought that luminous baryonic matter (stars) 

accounts for only one-fifteenth of the total baryonic mass; gas 

and diffuse gas, in equal proportions, account for the 

remaining 14/15. This is established by measurements of non-

visible light wavelengths, in particular the 21 cm radio line for 

neutral hydrogen HI, in dominant quantity in gases (in addition 

to information in the near infrared at 3.6 𝜇𝑚). The terms 

‘missing mass’ or ‘dark matter’ are now used only for non-

baryonic matter (whereas in early texts, they included non-

luminous baryonic mass).  

Today, it is generally agreed that the ratio between baryonic 

and dark matter is on the order of 1 to 6, i.e. 17% baryonic 

matter to total matter (baryonic + dark).  

Let us take a close look at the movements of stars and gas in 

spiral galaxies. They provide a fine example, allowing us to 

get to the heart of our proposal. In Fig. 2, we have selected two 

curves from the work of Stacy S  McGaugh (2014) (We have 

not chosen galaxies where the two curves of the two velocity 

profiles (measurements / models) show the strong difference, 

for distances away from the center, between the stable plateau 

of the ‘measurements’, and the decay of the models. It is this 

type of curves that are usually presented to prove and discuss 

the presence of dark matter.  

But these curves do not meet the average ratio between dark 

matter and baryonic matter, but rather show an excessive 

value, greater than the ratio of 6 to 1, or, for velocity ratio, 

greater than 2.4. And, precisely, these are not the only possible 

behaviors.).  

They show the variation in velocities of stars, or gas, as a 

function of the distance R from the galaxy center. For each 

galaxy, we represent the observed/measured velocities 𝑣𝑚 

(using our notation; the dotted curves result from adjustments 

to the data points), and the calculated expected velocities 𝑣𝑒 

(solid curves). This assumes that we have sufficiently good 

knowledge of the existence, quantity and mass distribution of 

gas, stars and dust, acting gravitationally. 

We have chosen two galaxies where the distinction between 

the two curves (measured/expected velocities) is clear for 

small 𝑅, as this is generally not the case: near the galaxy center, 

velocity variations are large (slopes close to the vertical; within 

a mass distribution of constant density, the spatial derivative 

of velocity is in 𝑅−1/2  and becomes infinite at the origin). The 

two curves tend to merge, and small inaccuracies in 𝑅 translate 

into large inaccuracies in 𝑣.  

Furthermore, information on small 𝑅 is of inferior quality: - 

superimpositions of signals from stars at different distances 

from the center; - blurring of information depending on the 

orientation of the galaxy; - difficulties in calculating 𝑣𝑒, which 

is very sensitive to the spatial distribution of baryons (gas and 

stars) in the central zones; - poorer mass/luminosity 

relationship at the center (Stacy S McGaugh, Lelli, & 

Schombert, 2016).  

All in all, the data are not of the best quality. 

 

 
Figure 2. Star speeds in spiral galaxies. Two spiral galaxies 

were chosen from Stacy S  McGaugh (2014): the DDO 154 

galaxy on the left, the NGC 1560 galaxy on the right. The 

rotational velocities of the stars are plotted on the ordinate 

(km/s), their distance from the galaxy center is noted 𝑅, on the 

abscissa (kpc). Two curves are shown for each galaxy: the 

dotted line represents the ‘measured’ values (original points in 

the article cited); the solid line represents the values estimated 

on the basis of assumptions made about the amount of 

baryonic matter and its distribution in the galaxy. As a function 

of increasing 𝑅, velocities rise sharply, stabilize at a plateau 

and then fall back slightly. The velocities in the rising parts of 

both curves show a constant ratio (the slopes are not strictly 

rectilinear, but the ratio between velocity values remains 

roughly constant). This ratio is the same on the plateaus, where 

it is particularly noticeable. That is, we have 𝐴𝐴′′/𝐴𝐴′ ≈

𝐵𝐵′′/𝐵𝐵′ ≈ 𝐶𝐶′′/𝐶𝐶′ for each of the two galaxies. For DDO 

154, the ratios are respectively equal to 2.3; 2.5 and 2.4; for 

NGC 1560, the ratios are respectively equal to 2.4; 2.3 and 2.3 

(rough estimates). These are therefore also the same ratios 

found in the two different galaxies. 

 

The two examples chosen (Fig. 2) correspond to a certain 

variability in velocity ranges (10 to 80 km/s), and spatial 

amplitudes; other galaxies in the Stacy S McGaugh et al. 

(2016) data deviate even further from these value fields 

(velocities from 10 up to 300 km/s; distances to center in tenths 

of kpc up to several tens of kpc). Two sets of remarks can be 

made about the curves. 
 

1) In the part corresponding to small distances from the center 

of the galaxy, we observe a rise in velocities according to more 

or less regular inclinations (monotonicity of the curve rises in 

𝑅−1/2 ). For a given galaxy and for each abscissa 𝑅, the ratio α 

of the velocities read on the two curves (measurements / 

estimates, i.e. 𝑣𝑚  /𝑣𝑒) remains within a narrow range (roughly 

constant ratio), whatever the values of the slopes and 

velocities. For the two galaxies in Fig. 2, this ratio is equal to 

2.4 (galaxy DDO 154) and 2.36 (NGC 1560), roughly 

estimated by the ratios of the 𝐴𝐴′′/𝐴𝐴′ and 𝐵𝐵′′/𝐵𝐵′ segments 

(averaged over two values). 
 

2) After the rise in velocity from the center, we observe a more 

or less flat or slightly descending plateau (depending on the 

spatial amplitude observed, bearing in mind that we can now 

detect rotational gas motions significantly outside the visible 
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galaxy). This plateau is connected to the top of the ascending 

parts described in 1). The ratio between 𝑣𝑚 and 𝑣𝑒 remains 

roughly constant, although the absolute values may differ. 

Measurements taken on the figure give values of 2.35 (DD0 

154), 2.3 (NGC 1560), again roughly estimated by the ratios 

of the 𝐶𝐶′′/𝐶𝐶′  segments. The velocity comparison is easier to 

read on the plateaus for large R distances to galaxy centers. In 

contrast to the data for central stars, the peripheral gas is very 

reliable, with better velocity behavior.  

Let us insist: it is the same behavior, i.e. the same 𝑣𝑚/𝑣𝑒, for 

both ascents and plateaus. The ratio can be read on the plateau, 

but it is already there. Without concern for mathematical and 

statistical rigor, we can average the velocities read on the 

plateaus by including the various galaxies discussed by Stacy 

S  McGaugh (2014) and Stacy S McGaugh et al. (2016): these 

are NGC 7331 (1.7 read at 38 kpc), DDO 154 (2.4 at 6 kpc), 

UGC 128 (2.4 at 55), NGC 6946 (1.7 at 18), NGC 1560 (2.5 

at 10), NGC 7814 (2.7 at 25), NGC 6503 (2.6 at 20) and NGC 

3741 (4.5 at 7). The velocity shift is not only apparent in areas 

of low gravitational potential (corrected by the MOND law), 

but also in areas close to the center and of higher potential. 

On these few examples (real statistical studies on larger 

samples would certainly be needed) we have an average α ratio 

of between 2.4 and 2.5 (The α value close to 2.4 is in line with 

the velocity issue discussed here, but room must be left for 

other mechanisms invoked by the authors that may explain 

why, in some cases, it may not have that 2.4 value.). This 

corresponds to the dark matter/baryonic matter ratio of 6 to 1. 

In fact, we relate velocities to masses by the relation 

 

(
𝑚𝑚

𝑚𝑒
) = (

𝑣𝑚

𝑣𝑒
)

2
       (25) 

 

which is justified by Newton’s laws of speed, mass and 

distance: the velocity of a body (e.g. a planet) around a star of 

mass 𝑀 and distance r is such that 

 

(
𝑣2

𝑟
) =  (

𝐺𝑀

𝑟2 )       (26) 

 

For the same 𝑟, the ratio of masses is equal to that of speeds, 

squared. And α2 = (2.4)2 ≈ 6, proportion of mass seemingly 

missing. 

Gravitational mirages 

A gravitational mirage (also known as a gravitational lensing 

effect) shows the displacement of the image of a distant object 

in a direction that is not its ‘true’ direction; it can also lead to 

its distortion, and sometimes its multiplication. It results from 

interaction with a massive object (a star, a galaxy, a cluster of 

galaxies) interposed between the distant object and the 

observer. The theory of this effect is well established, based on 

general relativity. Its amplitude is considered by many to be 

proof of the existence of dark matter.  

A variety of observations, measurements and theories can be 

found, depending on the size and shape of the interposed 

object, and the geometry of the overall system (we distinguish 

in particular between micro-, weak and strong lensing effects). 

For the purposes of our discussion, we will retain that the angle 

manifesting the effect of gravitational mirage verifies the 

following generic formula (e.g. Gasparini (2020); Claeskens 

(2003): 

 

𝜃 =  (
4𝐺𝑀

𝑑𝑐2 )       (27) 

 

where 𝑀 is the deviating mass, 𝑑 is the distance to the mass 𝑀 

of the light beam carrying the image of the observed object, 𝐺 

is the gravitational constant and 𝑐 is the speed of light in a 

vacuum (i.e. our c0; classical Newtonian reasoning gives the 

same relationship with a factor of 2 instead of 4). 

According to the authors, the deflection angles 𝜃 do not 

correspond to the observed masses 𝑀: they are too large. They 

highlight mass excesses, blamed on invisible dark matter, in 

average proportions similar to those postulated in other 

situations in relation to baryonic matter (around 6 times more). 

Taking up the formula just given, we can propose another 

interpretation.  

Indeed, if we decrease the value of 𝑐 by the proportion 

indicated above (a factor α of the order of 2.4), we see that, all 

other things being equal, the mass 𝑀 respecting the same value 

of angle 𝜃 will be divided by 𝛼2, i.e. by a factor close to 6. We 

do this if, in relation to our local standards, the assignment of 

such a value to 𝑀 seems aberrant to us. In this way, the need 

for dark matter disappears. This is a situation in which there is 

no object moving at a speed 𝑣 that needs to be determined. The 

magnitude under discussion here is an angle: our approach thus 

seems supported by the resolution of two distinct problems (a 

velocity on one side, an angle on the other (It may come as a 

surprise that angular deflection yields roughly the same 

percentage of dark matter as galaxy rotation curves?  

The explanatory theoretical frameworks are different: the 

speed of celestial objects refers to Newtonian theory, 

gravitational mirages to general relativity, which certainly 

encompasses the former.), with the adoption of the same α 

factor (same value of 𝑐, i.e. 𝑐𝑐). 

We are not comparing 𝑣/𝑐 ratios here; but general thinking on 

velocities encourages us to modify 𝑐 on its own in the 

equations (which amounts to changing c in relation to 𝑐0, and 

indirectly in relation to another 𝑣’s). We are led to do this in 

situations where we must not forget that 𝑐 refers to 

propagation, and is not just a structural constant. This makes it 

possible to bring the equations into play in conditions where 

the speed of light (which guides other phenomena, not only for 

measurement but also for physical mechanisms) may be 

different from 𝑐0 and, for example, lower. We are thinking of 

situations where the equations of general relativity are brought 

into play in the cosmological medium. 

The cosmic microwave background and dark matter 

Work on cosmic microwave background radiation (CMB) has 

also led the authors to postulate dark matter. The CMB is the 

relic of the radiation emitted by the hot, dense horizon, at the 

moment when photons can break free and the universe 

becomes transparent. The horizon is the opaque wall we come 

up against as we go back in time, reaching a state of the 

universe that did not allow light to pass through (estimated to 

be 380,000 years after the Big Bang).  

At its origin, radiation had a temperature of around 3,000 K, 

but the expansion of the universe has brought it down to an 

estimated 3 K today. The study of the CMB involves acoustic 
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velocities, combined with temperatures and high densities, 

through specific interactions between matter and radiation, 

inside a plasma where electrons and protons are dissociated. 

This is the so-called pre-recombination period. The 

characteristics of this early state come into play when we 

question the homogeneity properties of the universe as 

observed today. The fluctuations observed in the CMB allow 

us to predict the different structures of galaxies, clusters, 

superclusters, filaments and so on. 

CMB radiation is that of a black body, i.e. the spectrum of 

wavelengths emitted is a function solely of temperature. There 

are very small temperature fluctuations (determined by the 

wavelengths of light in the context of blackbody radiation) of 

the relative order of 10-5.  

The Planck satellite has made it possible to map these 

fluctuations. These fluctuations are related to density 

fluctuations, via the propagation of acoustic waves in the dense 

plasma of the horizon. The relationship between temperature 

and density fluctuations is demonstrated (Aubert, 2019). 

 
𝛿𝑇

𝑇
= −

1

6
(

𝛿𝜌

𝜌
)      (28) 

 

where 𝑇 is the temperature and 𝜌 the density of matter (a priori 

including dark matter and baryonic matter).  

According to the authors, a proper quantitative understanding 

of this physics (acoustic waves, coupling with thermal 

equilibrium, links between temperature and density) requires 

the intervention of dark matter. Do we have a say? The CMB 

horizon from which the 3𝐾 radiation originates is receding 

away from the observer due to the expansion of the universe. 

To plot the temperature map, we need to take into account the 

escape velocity, deduced from the Doppler effect (for a 𝑧 of 

the order of 1100).  

If our reasoning is correct, we can imagine that the escape 

velocity has been exaggerated; however, this velocity shifts 

everything towards the red, i.e. lowers the temperatures 𝑇 of 

black bodies. On the other hand, the 𝛿𝑇 remain the same (these 

are differences, the two limits of the interval are equally shifted 

by the expansion).  

So, for the same red, by decreasing the escape velocity, which 

would have been exaggerated, we increase the thermal red, i.e. 

we decrease the temperature.  

We increase the ratio 𝛿𝑇/𝑇; the previous relationship shows 

us that we then increase the absolute value of the density 

fluctuation without the need for additional dark matter.  

The previous question reflects only one of the many aspects 

relating to CMB. There is the question of the chronology of 

dark matter's intervention in relation to baryonic matter. Dark 

matter is insensitive to electromagnetic interaction, and does 

not interact with charges in plasma (ionized matter): it is 

unaffected by acoustic waves.  

It can form lumps that will then attract baryonic matter: the 

seeds of galactic structures. The authors estimate that these 

structures would not have had time to form (given the age 

assigned to them) if dark matter had not initiated their birth. 

Insofar as the authors believe that, for these various questions, 

the proportion of dark matter is still a factor of 6 higher than 

baryonic matter, we are comforted as to a velocity gap of a 

factor (6)1/2 influencing the interplay of temperatures, the 

guiding parameter for phenomena taking place in the CMB. 

 

Discussion of dark matter 

There is a wealth of literature on where dark matter is 

postulated to exist. It covers a wide variety of galaxy types 

(elliptical, spiral, diffuse, ultra-diffuse, young or old, large or 

small, massive or not) and groupings (clusters, superclusters, 

filaments, colliding galaxies, etc.), each with its own 

star/galaxy behavior, depending on position and mass 

distribution. For each case, the discussion focuses not only on 

the existence of dark matter, but also on its distribution: larger 

or smaller/fragmented halos, encompassing galaxies or nestled 

within them, variations according to distance from the center 

of the galaxy or cluster, and so on.  

The refractive universe hypothesis gives a megascopic 

approach (a kind of filter applied to the whole universe) and 

accounts for the average abundances of dark matter (and dark 

energy, see below). But in the detail of individual galaxies, 

etc., there is some variability in the amount of postulated dark 

matter and its distribution that questions the refringence 

model. So, we have to look for other ‘local’ causes (to be added 

to the refringence effect). Insofar as dark matter manifests 

itself as a discrepancy between data and models, its quantity 

and distribution are a function of these two factors 

(data/models).  

At the level of data acquisition, there may be some variability 

due to various biases, errors (choice of target objects, stars, 

neutral or ionized gas, and observed wavelengths...) and 

various corrections (galaxy inclination; statistical 

approaches...) that would be responsible for the discrepancy 

with the prediction of the refringent model. 

In terms of models, there can be local variability depending on 

whether or not we take into account the influences of the 

motions of stars closer or further away in the same galaxy, or 

in neighboring galaxies within a galaxy cluster. The way in 

which the expansion of the universe is taken into account can 

also play a part.  

Perhaps other mechanisms also need to be brought into play: 

could gravito-magnetic effects, predicted by general relativity 

(gravitational attraction depending on the velocities of the 

masses in motion) be added to the usual Newtonian attraction? 

We may still think of birefringence effects (and not ‘simple’ 

refringence) due to the fact that galaxies are not isotropic (the 

possible polarization of light can also play a role, both in the 

transmission and reception of signals (Effects similar to 

pleochroism of birefringent minerals.).  

Some authors propose modifying the laws of gravitation 

(MOND model, Milgrom (2002); Bekenstein (2009); Sus 

(2014); Borka, Capozziello, Jovanović, and Jovanović (2016). 

G Paturel and Teerikorpi (2006) and Georges Paturel, 

Teerikorpi, and Baryshev (2017) highlight the various biases 

affecting the evaluation of the Hubble constant.  

For Buchert (2012) curvature and the existence of higher 

density zones in the universe would be responsible for the 

effects attributed to dark matter, while (Maeder, 2017a, 2017b) 

proposes a scale invariance hypothesis.  

Ván, Abe, and Applications (2022) and Pszota and Ván (2023) 

propose a modified law of gravity coming from 

thermodynamics. And we must not rule out still other 

explanations, of which the Dirac Milne universe is one 

(Chardin, 2018). 
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Interestingly, for our Milky Way, the postulated amount of 

dark matter is much lower (by a factor of 5) than in other 

galaxies of the same type (Jiao et al., 2023).  

We would like to link this to the fact that, in the case of our 

galaxy, star velocities are largely measured by parallax effects. 

We had anticipated, in the form of a question (Guy, 2022), that 

then dark matter would not need to be hypothesized. 

Some are convinced of the existence of dark matter and are 

looking for the particles that might correspond to it (physics 

work aims at a modification of the Standard Model and the 

detection of new particles, in a so-called supersymmetry 

framework, Bertone (2014).  

The problematic nature of dark matter and the situations in 

which it can be found are highlighted by many: - it manifests 

itself through gravitational effects, but does not interact with 

baryonic matter, nor with itself; - it is correlated with ordinary 

matter in a large number of galaxies Stacy S McGaugh et al. 

(2016); -it seems capricious, sometimes overabundant, 

sometimes virtually absent; - it can be correlated with the age 

of objects; - surprising effects are observed in its appearance 

or disappearance, in the loss of symmetries observed during 

certain transformations; -its behavior over time and as a 

function of relative distances in galaxy clusters is difficult to 

explain, given what is otherwise assumed for it (Aubert, 2019); 

- the question of its production and annihilation arises in the 

course of the universe's history; -the question of its distribution 

in space is made tricky by the very interplay of gravitational 

forces: long-distance forces: dark matter is positioned where it 

does not play; integrative character: an infinite number of 

spatial distributions are possible for the same gravitational 

effect (additional assumptions must be made to choose the 

most reasonable one).  

Some authors make no secret of their embarrassment and 

question the very existence of dark matter.  

As a conclusion to these steps on dark matter, without having 

inspected in detail all the situations where it is postulated with 

variable quantity (Examining every situation is a research 

program in itself.), we will underline, as a key of more general 

value, the beautiful homotheticity between star velocity 

curves, measured on the one hand, expected on the other, in 

many galaxies.  

The α ratio is not just an average of scattered data, it holds 

together along particular curves, observed on stars and outer 

gas, and has the same value for very many galaxies. This fit is 

a little strong for dark matter, which is reputed not to interact 

with ordinary matter! There is something constant, not the 

effect of chance, behind this variety of observations.  

On this basis, it seems to us that we are dealing with an 

artefact, and not with the problem of a missing mass to search 

for. This hypothesis is extended and strengthened by the fact 

that it works well in the case of gravitational mirages and by a 

preliminary analysis of other situations (such as those of the 

CMB).  

This is in line with work highlighting the correlations between 

dark matter and baryonic matter. This leads us to say: if this 

effect of poorly estimated velocities does indeed come into 

play in such situations, it will inevitably manifest itself in all 

others where motions are at stake (expansion of the universe, 

dark energy, Hubble tension, etc.). 

 

4. DOES THE UNIVERSE HAVE A DARK SIDE? B. 

DARK ENERGY 

Dark energy is evidenced by the fact that the speed of 

expansion of the universe exceeds that predicted by modelling: 

this is known as acceleration. It has been postulated by three 

teams of astrophysicists, led respectively by Saul Perlmutter, 

Brian Schmidt and Adam Riess (see, for example, (Perlmutter 

et al., 1999)). The excess of the expansion velocity is 

manifested for recent periods, since 5 billion years, i.e. from 

an age of the universe equal to some 8 billion years. Gasparini 

(2020) recalls the results of the Supernovae cosmology 

project: the luminosity distance of Supernovae Ia is plotted as 

a function of redshift, and observations are compared with 

models of decelerated universes, without dark energy. The 

least bright supernovae, and therefore the most distant, are less 

luminous than predicted for a normally decelerated universe. 

The distance at which they occur is greater than expected, 

indicating an accelerating universe. To accommodate this, 

some theorists introduce into the evolution equations a density 

Ωv (the subscript v stands for ‘vacuum’; also referred to as ΩΛ 

where Λ is the cosmological constant) manifesting a repulsive 

energy (dark energy). 

Let us look at the proportions accepted today for Ω𝑣  (Ω𝛬) and 

Ω𝑚. The term Ω𝛬 corresponds to a ‘missing’ quantity of around 

68-70% of the universe's energy, calculated according to the 

respective weights of Ω𝑖  in the evolution equations (compared 

with 32-30% for ordinary and dark matter taken together with 

4-5% for the former and 25-26% for the latter).  

According to Asgari et al. (2020), the relative weight of Ω𝛬 

could reach a larger value of 82%, bringing the sum of 

ordinary and dark matter down to 18% (The difference 

between the values of the density parameters predicted by 

Asgari et al. (based on gravitational, or so-called weak lensing, 

shear effects by nearby galaxies, 𝑧 = 1.5) and those usually 

predicted (based on data acquired by the Planck satellite on the 

cosmic microwave background) is what we call the S8 tension, 

named after the parameter concerned, depending on Ω𝑚.). 

Given that ordinary matter accounts for roughly one-sixth of 

the latter fraction, we can estimate that its weight vis-à-vis dark 

energy, if we dispense with dark matter, is of the order of 3%, 

opposed to 97%. 

One avenue already shows the potential contribution of our 

approach. It takes advantage of the authors' work on the 

cosmological constant in Einstein's equation, which they claim 

accommodates the question of dark energy. Einstein's equation 

is, in fact, the source of models for the expansion of the 

universe. In its initial version, with no cosmological constant, 

it is written: 

 

𝑅𝜇𝑣 −  
1

2
𝑅𝑔𝜇𝑣 =  (

8𝜋𝐺

𝑐4 ) 𝑇𝜇𝑣    (29) 

 

The geometric parameters of metric 𝑔𝜇𝑣 , Ricci Tensor 𝑅𝜇𝑣 and 

scalar curvature 𝑅 (to the left of the equal sign) are linked to 

the energy content (stress-energy tensor 𝑇𝜇𝑣 , to the right, 

expressed in mass, i.e. kg). By adding a term to the left-hand 

member, involving the cosmological constant 𝛬, we show that 

a repulsive force is manifested that accommodates the 

accelerated expansion: 
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𝑅𝜇𝑣 −
1

2
𝑅𝑔𝜇𝑣 + Λ𝑔𝜇𝑣 = (

8𝜋𝐺

𝑐4 ) 𝑇𝜇𝑣    (30) 

 

We can propose another solution, noting that the factor c is 

explicitly involved in the denominator of the factor on the 

right. If we think that, on the cosmic scale where the problems 

arise, we must divide 𝑐 by a factor 𝛼, we see that we are 

committing an error of a factor (𝛼4 − 1 ) according to: 

 

(
8𝜋𝐺

𝑐4
) 𝑇𝜇𝑣 = 𝛼4  (

8𝜋𝐺

𝑐4
) 𝑇𝜇𝑣 − (𝛼4 − 1) (

8𝜋𝐺

𝑐4
) 𝑇𝜇𝑣   

   (31) 

 

In fact, according to our analysis, we should take only the first 

term of the second member of the above equation, which can 

also be written as: 

  

𝛼4 (
8𝜋𝐺

𝑐4
) 𝑇𝜇𝑣 =  (

8𝜋𝐺

𝑐4
) 𝑇𝜇𝑣 +  (𝛼4  − 1) (

8𝜋𝐺

𝑐4
) 𝑇𝜇𝑣 

(32) 

 

This shows that, wanting to take only the term in 𝛼4, we have 

to correct the usual term by adding the factor (𝛼4 −

1) (
8𝜋𝐺

𝑐4 ) 𝑇𝜇𝑣 . Let us write two exponents to differentiate, in the 

stress-energy tensor, the standard term referring to the usual 

matter m, and the corrective term designated by 𝛬; we can 

write 

 

𝑇𝜇𝑣
(Λ)

= (𝛼4  − 1)𝑇𝜇𝑣
(m)

     (33) 

 

The stress-energy tensor we have to add is larger than the usual 

stress-energy tensor by a factor (𝛼4 − 1 ). This manifests itself 

in mass energies, or mass densities, in the same ratio. If we 

take 𝛼 to be close to 2.4, the factor (𝛼4 − 1 ) is close to 35. 

We thus expect 

 

𝜌Λ = (𝛼4 − 1 )ρ𝑚      (34) 

 

or approximately 𝜌Λ ≈ 35𝜌𝑚. As it happens, the ratio of 1 to 

35, out of a total of 36 corresponds to the ratio of 3 to 97 

(baryonic matter, without dark matter/dark energy) that we 

discussed just now from the work of Asgari et al. (the 

correspondence is a little better than for the proportion of 4 to 

5% versus 95 to 96% in the other works). What is important is 

the notable difference between the ordinary matter/dark matter 

proportion and the ordinary matter/dark energy proportion, 

which could be accommodated by the ratio α4/α2 equal to α2 

i.e. of the order of 6. 

If we take for ρm a value in the range discussed in Section 2, in 

particular the low value of the order of 5.10-28 kg/m3, we are 

led to propose 𝜌Λ ≈ 35 × 5 × 10−28 kg/cm3 =  1.75 × 10−26 

kg/m3. From this we deduce, via the relationship between 𝜌Λ 

and 𝛬, i.e. 𝜌Λ = 𝑐2𝛬/8𝜋𝐺, a cosmological constant 𝛬 of the 

order of 10−52 m-2.  

This is in line with what we read in the literature, both for 𝜌Λ 

and for 𝛬. Taking the high end of the density range, of the order 

of 5 × 10−27 kg/m3 multiplies the previous values of 𝜌Λ and 𝛬 

by ten. In any case, 𝜌Λ is a fictitious density designed to correct 

an error in the initial understanding. The consistency of our 

approach in this respect is a way of giving the cosmological 

constant its full value in solving the problem of dark energy, 

as various authors have called for. 

A great deal of research is being carried out to understand what 

lies behind dark energy of density Ωv. As we said, some 

authors identify it with the cosmological constant 𝛬. The latter, 

which opposes the attractive force of gravitation, was 

introduced by A. Einstein in his equations to guarantee a 

stationary universe. Others see it as the expression of vacuum 

energy (in the sense of quantum mechanics): however, 

according to particle physics and quantum field theory, there 

is a big difference in orders of magnitude between the two 

energies.  

The vacuum energy estimated by quantum mechanics would 

be some 1040 times greater, making the supposed link between 

the two problematics. For some authors, this is one of physics' 

greatest enigmas. For us, there is no problem with the 

cosmological constant, insofar as it does not refer to an actual 

force of nature but expresses a correction to an initial 

erroneous understanding.  

Rather, many are seeking to dispense with dark energy, and 

point to the difficulties or paradoxes associated with it (e.g. 

Huterer and Turner (1999): - we do not know which physical 

field to link it to; - its density does not decrease with expansion 

(this observation would not be embarrassing for us, since it is 

a question of misjudged velocities, not of energy and density); 

- its intervention is intermittent in the history of the universe 

(cf. the accelerated expansion of inflation at the very beginning 

of the Big Bang). Not to mention the superimposed problems 

of dark matter and dark energy playing antagonistic roles in 

the equations, leading to a kind of outbidding: the authors 

speak of degeneracies that are difficult to resolve.  

Buchert (2000, 2008) points to the non-homogeneity of the 

universe and the existence of voids on large scales (negative 

curvature). Chardin (2018) proposes a role for anti-matter. 

Without fundamentally challenging the idea of accelerated 

expansion, Fleury, Dupuy, and Uzan (2013) attempt to 

calculate the Hubble diagram in the case of a non-

homogeneous universe. 

5. DISCUSSION: A NON-DARK UNIVERSE, AN 

OLDER UNIVERSE? 

Orders of magnitude 

At this point in our work, we are looking at two pieces of a 

puzzle, each with its own consistency and solidity. One shows 

us that it is possible to envisage a refractive universe 

characterized by an index 𝑛𝑐 that can reach and exceed the 

value 2 (2nd section).  

The other shows that the same 𝛼 factor, of the order of 2.4, 

dividing the speed of light as it travels through the universe, 

seems an interesting way to account for the problems of the 

dark side of physics (3rd and 4th sections). Can we put these 

two pieces together? By a pleasant surprise, our answer is: yes! 

They fit almost perfectly! In fact, their synergy reinforces both 

theoretical predictions and observational data! So, we will take 

a gamble and say: by getting rid of its dark side, the α factor 

can be explained by the refringence of the universe.  

This is characterized by a density 𝜌𝑢 and an equivalent radius 

𝑅𝑢 linked together by the value 𝑛𝑐 = 2.4 in relations (13) or 

(19). Let us look at where we started from: "only about 5% of 

the matter and energy in the universe is known; 25% of 
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unknown dark matter (6 times more abundant than ordinary 

matter) and 70% of mysterious dark energy are missing from 

the inventory." We therefore propose a simple solution to these 

challenges by considering the universe on a cosmological scale 

as a refractive medium. The numbers given here are orders of 

magnitude subject to a certain variability. It is to these 

proportions, considered on average, that our proposals apply. 

On average, the value α ≈ 2.4 accounts for the velocity 

differences observed for celestial objects; its square α2 ≈ 6 

gives the ratio of dark matter to baryonic (or ordinary) matter, 

its power 4, i.e. α4 ≈ 36, the ratio of dark energy to ordinary 

matter. These powers are derived from physical reasoning 

using Newton's laws and Einstein's equations. Dark matter and 

dark energy are the names of corrections to compensate for the 

error made in keeping for the speed of light at cosmological 

scales its ‘usual’ value in a vacuum. Can we go further and 

discuss more precisely for our universe the value of the 

coordinates of the point (𝑅𝑢, 𝜌𝑢) on the line connecting them 

(Fig. 1)? Before we do so, it is appropriate to make two sets of 

remarks, firstly (section 5) on the use of the value 𝑐𝑐 in the 

equations derived from relativity (in response to objections 

that might arise), and secondly (section 5) on the age of the 

universe. 

Back to gravitational mirages and Einstein's equations 

The distinction between scales (section 2): local scale and its 

velocity c0 vs cosmological scale and its velocity 𝑐𝑐, allows us 

to clarify a question we could, or should, have asked ourselves. 

This concerns the replacement of 𝑐 = 𝑐0 by 𝑐𝑐, in the 

gravitational mirage equations (section 3) on the one hand, and 

in Einstein's equations (section 4) on the other. Why do it? Isn't 

refractivity (bringing velocity 𝑐𝑐) already accommodated by 

the metric's 𝑔𝑖𝑗 coefficients, as seen in section 2 with the 

Schwarzschild metric?  In response, however, it seems to us 

that we have done the right thing.  

For gravitational deflection first of all, the curved path from 

the objects observed by astronomers must be considered on a 

cosmological scale. But the calculation is made in general 

relativity as if the deflecting mass were alone, bypassed by a 

photon at speed 𝑐0, and not bathed in the real universe 

populated by matter. In this latter case, as we have shown, we 

need to consider a global velocity equal to 𝑐𝑐. Without 

repeating all the calculations, we can see that a good 

approximation of what is happening is provided by replacing 

𝑐 = 𝑐0 by 𝑐𝑐 in equation (27). The situation is similar for the 

Einstein equation. This equation has its first value in local 

space in the sense we have given it (which can extend as far as 

the solar system).  

The speed of light is 𝑐0. However, in the case of the 

(accelerated) expansion of the universe, it must be transposed 

to the cosmological scale (the stress-energy tensor will be that 

of a fluid or gas of galaxies and not of a star). We restore the 

situation by taking a value of 𝑐𝑐 for the speed of light in this 

equation, replacing 𝑐 = 𝑐0. 

The age of the universe and ‘impossible’ galaxies  

An important consequence of the above developments relates 

to the age of the universe, i.e. the time elapsed since the Big 

Bang. This age is determined from the Hubble constant, itself 

estimated from the escape velocities of galaxies as a function 

of their Euclidean distances ‘projected’ from our spot as 

observers on Earth. If we say that we now need to reduce the 

escape velocities of galaxies, the entire Hubble diagram must 

be tilted by a factor of 𝑛𝑐. We end up with a new constant 𝐻′ =
𝐻/𝑐𝑐 , i.e. an age of the universe multiplied by 𝑛𝑐; starting 

from a standard age of 13.8 billion years, the modified age 

would then be 33 billion years? 

The reason for this increase lies in the chronology based on 

Hubble's law, with a constant revised downwards (These 

considerations must also come into play in the discussion of 

the Hubble tension, cf. Guy (2022)), in correspondence with 

the slower evolutionary dynamics of certain phenomena due to 

smaller masses than previously thought.  

At first glance, this should not compromise the various stages 

in the history of the universe, bearing in mind that there are 

always circularities between models and observations; can we 

think of them working better with cc than with c0? To make 

progress in this direction, we need to re-examine the scenarios, 

measurements and assumptions that regulate the variation of 

the scale factor 𝑎(𝑡) as a function of time. 

However, a few simple considerations already provide some 

approximate results. With these, we can tackle the question of 

impossible galaxies. In recent years, we have been observing 

objects (massive black holes, quasars, stars, galaxies) 

inhabiting the very young universe, and have found that the 

existence of such objects, which require long periods of time 

to structure, does not match the supposed youth of the universe 

that hosts them. For example, galaxy formation and structuring 

times are in the region of one to several billions of years, 

whereas galaxies are now observed to be a few hundred 

million years old.  

See Boyett et al. (2024) on galaxies, in a very abundant 

literature dealing with the data obtained by the JWST; the 

problem also arises for black holes (Maiolino et al., 2024). 

Gupta (2023) provides numerous references. 

According to our proposal, if all the times allocated to the 

observed objects are multiplied by the same factor of 2.4, the 

young galaxies observed will correspond to universe ages that 

can exceed one billion years (i.e. the hundreds of millions of 

years allocated by the JWST multiplied by 2.4). This gives 

them greater temporal latitude to form and structure, and 

provides an avenue to alleviate their ‘impossibility’ character. 

But if all the durations are lengthened in the same proportion, 

including those needed to structure the objects (stars, galaxies) 

in question, the problem of their registration in a longer 

duration will still arise. 

Let us propose a first answer to this problem: star formation 

times are estimated on the basis of the kinetic constants of 

various reactions, particularly nuclear (but also thermal and 

matter diffusion), measured in the laboratory with our ‘local’ 

standards (especially 𝑐 = 𝑐0), and there is no need to modify 

them. For the same formation time, the problem of matching 

the age of the universe estimated from ‘distant’ data could then 

be solved by extending the age of the universe. 

If the increase in the age of the universe and its modalities do 

not leave enough time for the evolutionary durations of 

galaxies at the beginning of the Big-Bang history (we are 

talking several billion years, not just one, for the increase in 

galaxy mass and their structuring), we will have to revise our 

copy. We must take into account: - the part of the duration 

amplitudes of stars and galaxies that are calibrated by the 
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overall cosmological data (and not only the ‘laboratory’ ones); 

- the expansion of the universe and – the possible greater 

cosmological index nc at early stages (it slows down light 

velocity and physical processes at these remote epochs); - the 

non-linear function between age (or expansion scale factor 

𝑎(𝑡)) and redshift 𝑧 values (for the most distant objects; the 

relation between observed quantities and redshift 𝑧 does not 

change, because 𝑧 does not change, but the link with 𝑎(𝑡) 

changes as a function of the model inputs (according to the 

presence or absence of dark matter, dark energy…). 

As a second answer to the ‘impossible’ galaxies issue, we may 

explore further the non-linearity hypothesis. Based on a model 

combining the standard model of cosmology and the theory of 

tired light, Gupta (2023) proposes an age of the universe of 

26.7 billion years, alleviating in his own way the problem of 

impossible galaxies. What is interesting is that the age 

extension compared with the ΛCDM model is not 

homogeneous, but mainly concerns the early universe defined 

in terms of 𝑧 (the cosmic time is stretched by some 5.8 to 3.5 

billion years for 𝑧 = 10 to 20). This leaves time for early 

galaxies (and their stars) to form (several billion years), and 

leaves recent evolutions virtually unaffected. 

 

 
Figure 3. Scale factor 𝑎(𝑡) as a function of time for several 

universe models. Horizontal axis: age from present in Gyr’s. 

Vertical axis: scale factor 𝑎(𝑡). The correspondence with the 

redshift z is also shown for 𝑧 > 0. Redrawn from  (Aubert, 

2019). Three models are being considered: the standard 

ΛCDM model (Ωm = 0.315, ΩΛ = 0.685), blue dashed curve; 

the standard Einstein De Sitter model (Ωm = 1, ΩΛ = 0), black 

dashed curve; our proposition (Einstein De Sitter model with 

a reduced Hubble constant, 𝐻0/2.4), continuous red curve. As 

Aubert, we have taken 𝐻0 = 67 km/s/Mpc. The equation for 

the Einstein De Sitter model is 𝑎(𝑡) =  (3𝐻0𝑡/2)2/3 + 1. 

Interestingly, the continuous curve and the blue spaced dotted 

curve are very close together for our local universe (0 < 𝑧 <
1), whereas, in a more distant past, a large duration, reaching 

some 10 Gyr’s (for high 𝑧, reaching 𝑧 = 20) appears. This may 

give a comfortable latitude for galaxies to form and evolve in 

the earlier stages of a prolonged universe, and respect the 

standard evolution of stars in the later stages. 

 

 

Our approach allows us to discuss the non-linearity aspect: a 

first simple indication for lengthening, especially at the 

beginning of Big Bang evolution, can be given by considering 

the Einstein de Sitter universe (Ωm= 1 and Ωv= 0) and compare 

it with the standard ΛCDM model. For the Einstein de Sitter 

model, we know the law of the scale factor: 𝑎(𝑡) =
 (3𝐻0𝑡/2)2/3 + 1.  

The age of the Big-Bang is 9 billion years, with 𝐻0 = 67 

km/s/Mpc (Aubert, 2019). If we divide the Hubble constant H 

by 2.4, the age of such a universe is 9 × 2.4 = 23 billion years. 

By plotting the new curve, 𝑎(𝑡) with 𝐻/2.4 (taking up the 

figure in Aubert, op. cit.) the deviation from the ΛCDM model 

occurs mainly at the beginning of the Big-Bang (Fig. 3). This 

does not affect our knowledge on nearby stars and galaxies, 

which have been well studied.  

The model does not put into question any of the standard 

theoretical ingredients. It stretches cosmic time and Big-Bang 

age by nearly 10 billion years for 𝑧 = 20, three times more 

than Gupta’s model. Stars and galaxies have the time to 

appear, evolve and disappear in generations prior to those that 

we have closer to us (and for which no change is to be 

expected). Recall that stars remain on the Main Sequence for 

around 5 billion years (depending on its mass, a star can last 

from a few hundred million years to almost 1000 billion years). 

On their side, galaxies evolve by collisions and mutual 

ingestions, in addition to the evolution of their own stars.  

The various figures announced for ages are orders of 

magnitude, the use of the Hubble constant gives an 

approximate indication of the age of the Big Bang (for the 

ΛCDM model, the age of the Big-Bang is not necessarily 1/H; 

close to the beginning, both cosmological index and Hubble 

parameter were greater (For an expanding universe with 

constant mass, cosmological index 𝑛𝑐 is greater for low radius 

values: in the (𝑙𝑜𝑔 𝜌, 𝑙𝑜𝑔 𝑅) plane the slope of constant mass 

trend is – 3 and cuts the 𝑛𝑐 trend in such a way that 𝑛𝑐 increases 

when 𝑅 decreases; as for the Hubble parameter, its derivation 

from the Friedman equations with 𝐻 = 1/𝑎 (𝑑𝑎/𝑑𝑡) shows its 

increase for low a.  

For both reasons, there could be a still larger stretching of time 

at the early epochs for a completely reworked model 

encompassing refringence.) 

Choose an average density and equivalent radius of the 

universe? 

As we have said, our main objective is not to focus on the 

precise characteristics of our universe, but to understand as 

plausible its refractive quality on its own scale, with an index 

of the order of 2.4. However, as a more or less artificially 

chosen reference point, can we position a universe with 

coordinates 𝜌𝑢 and 𝑅𝑢 on the index line nc = 2.4 in the diagram 

in Fig. 1? The Hubble radius (statically equivalent, in terms of 

its gravitational influence, to the radius of an expanding 

universe) is estimated from the age of the universe, itself 

evaluated by Hubble's law. If we trust this method, in our case 

we will have to start from a higher age (that we have just talked 

about impossible galaxies), and take a Hubble radius increased 

by the same proportion 2.4. Given today's accepted age of 13.8 

billion years, the new radius 𝑅𝑢  is 13.8 × 2.4 = 33.12 light-

years (we took 33).  

The corresponding density value is obtained from equation 

(19), i.e. 𝑙𝑜𝑔 𝜌𝑢 = −26.96, or 𝜌𝑢 = 1.1 × 10−27 kg/m3. Let 

us call this point U0 (Fig. 4).  

It summarizes our proposal, increasing the value of 𝑅𝑢 , it 

corresponds to a lower value of 𝜌𝑢 compared to what is 
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accepted today (see section 2). Universe is indeed devoid of 

dark matter (which contributes to lowering 𝜌𝑢). 

 

 
Figure 4. Universe positionings along the straight line 𝑛𝑐 =
2.4 in the plane (𝑅𝑢, 𝜌𝑢). These are simple milestones in a 

revision process that is yet to be iterated. Each is characterized 

by its pair of coordinates 𝑅𝑢 and 𝜌𝑢. The points 𝑈0, 𝑈1, 𝑈𝑐0 

and 𝑈𝑐1 are defined in the text; they correspond respectively to 

our proposal (U0), to the "standard" universe accepted today 

(𝑈1), to universes of critical density for two Hubble constants, 

the downwardly revised Uc0 and that of the universe in its 

standard knowledge (𝑈𝑐1).  

 

What other values should be shown on the diagram? 

As an indication, we can position other points in Fig. 4. The 

point U1 corresponds to the universe as we know it today 

(before our proposal), with 𝑅𝑢 = 13.8 billion light-years. We 

then have log 𝜌𝑢 = −26.19, or 𝜌𝑢 = 6.5 × 10−27 kg/m3. In 

relation to the previous point, we can say that, for the same 

total mass, if we decrease the radius (and therefore the 

volume), we need to increase the density. 

We can also position critical density universes, both for the 

standard universe and for our proposed one. This density 

corresponds to a flat universe without curvature; it is 

calculated from the Hubble constant by the formula 

 

𝜌𝑐 =  (
3𝐻2

8𝜋𝐺
)       (35) 

 

For the standard universe, accepted values for the Hubble 

constant range from 67 to 73 km/s/Mpc. For an intermediate 

value (see section 2.1), we find log 𝜌𝑢 = −26.00. For this 

value, the radius is still given by equation (19) and has the 

value 𝑅𝑢 = 11.09 billion light-years, or 101,045 . Let us call 

the corresponding point on Fig. 4 𝑈𝑐1.  

The value of the critical density calculated for the modified 

universe, i.e. with a value of constant 𝐻 revised downwards by 

a factor of 2.4, is equal to the standard critical density divided 

by (2.4)2 = 6. From the relations 𝜌𝑅2 = 𝑐𝑡𝑒 derived from 

equation (13) defining the index, and (35) for the critical 

density as a function of the constant 𝐻, we deduce that 𝜌/𝐻2 =
𝑐𝑡𝑒. A division of 𝐻 by 2.4 will induce a lowering of ρ by 6. 

This gives log 𝜌𝑢 = −26.78 or 𝜌𝑢 = 1.7 × 10−27 kg/m3. The 

corresponding radius is then given (equation 19) by 𝑙𝑜𝑔𝑅𝑢 =

1.435 i.e., 𝑅𝑢 = 101.435 = 27.22 billion light-years. We call 

the corresponding point in Fig. 4 𝑈𝑐0. The points 𝑈0, 𝑈1 𝑈𝑐0 

and 𝑈𝑐1, simple milestone, are all four positioned on the 

straight line 𝑛𝑐 = 2.4 in Fig. 4. The vertical offset between 

points 𝑈𝑐0 and 𝑈𝑐1 is the same as between points 𝑈0 and 𝑈1 , 

equal to 𝑙𝑜𝑔 6 or 0.78. The horizontal offset also remains 

unchanged. 

6. CONCLUSIONS 

In conclusion, in the face of contemporary astrophysical 

problems, wouldn't it be encouraging to consider, on a 

cosmological scale, a speed of light a factor of around 2.4 

slower than in our ‘local’ physics? Gravitation could be 

responsible for this reduction, with a ‘cosmological’ index that 

we have calculated to be equal to 

 

𝑛𝑐 = (1 − 
4𝜋𝐺𝜌𝑢𝑅𝑢

2

𝑐2 )
−1

     (36) 

 

for a universe with matter density 𝜌𝑢 and equivalent 

gravitational radius 𝑅𝑢. The values of 𝜌𝑢 and 𝑅𝑢 where such 

an index is conceivable are consistent with the range of values 

accepted today for our universe; bearing in mind that we need 

to shift the characteristics of our ‘standard’ universe by making 

use of the parameter 𝛼 = 𝑛c and its powers. The factor 𝛼 = 𝑛𝑐 

for reducing the velocity values of distant objects avoids the 

need for dark matter, dark energy and, by increasing the age of 

the universe, may spare us the difficulty of ‘impossible’ 

galaxies. 

We have not gone through all the situations that raise 

questions, particularly those concerning dark matter: in such 

and such cases where we are led to postulate it, our scenario 

(dividing the speed of light by a ratio 𝑛𝑐) may seem flawed 

(even though proponents of modified laws of gravitation or of 

other effects, such as those related to the non-homogeneity of 

the universe, would not see dark matter either.). We then need 

to go back to the drawing board, taking a close look at how the 

data were obtained and the various biases that may have come 

into play (absence of observations or observations tainted by 

uncertainties, types of data processing, including statistical 

processing, data based on a model, or models, that are 

debatable in a circularity that needs to be properly framed, 

etc.).  

This examination can be cross-referenced with the work of 

authors who, proposing other explanations, highlight the 

problems of dark matter and dark energy. It is possible for 

several explanations to play out concurrently, in cases where, 

for various reasons, the optical model exhibits unexplained 

local variability. In the meantime, we would like to emphasize 

the great economy of means of our preliminary approach, 

proposing a single explanation to solve a variety of a priori 

disjoint problems (dark matter, dark energy, CMB issues, 

gravitational lensing, impossible galaxies, cosmological 

tensions).  

Our economy extends to the compliance with existing laws 

(we do not propose any new laws, such as that of the MOND 

model, whose limitations dark matter proponents point out). 

The refractive universe hypothesis is another way of using, or 

saying, general relativity. It is simply more convenient than 

transporting Einstein's equations, but it is still general 

relativity. 
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