Palchoudhury Gas Theory and Role of Heat Engine

Sankar Palchoudhury

101/673/A, College Para, P.O. Kharia, Ward No. 21, Dist. Jalpaiguri, Pin Code -735101, West Bengal, India
CMOH Office, Jalpaiguri, Government of West Bengal, India

E-mail addresses: sankarpalchoudhury@gmail.com ,cmoh_jal@wbhealth.gov.in
Received Jan 2019
Received in revised : Feb 2019
Published: March 2019

Abstract

Palchoudhury gas theory is capable of describing the function of a heat engine. We can measure the capacity of a heat engine in two ways. 1) The product of pressure and inner surface area 2) The outcome of the gas constant, number of moles, the outer surface area of gas and temperature.

Keywords: Heat Engine, Thermodynamics
©2019 The Authors. Published by Fundamental Journals. This is an open access article under the CC BY-NC
https://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.14331/ijfps.2019.330123

INTRODUCTION

There is a deep relation among the quantity of a gas, temperature, pressure, inner surface area of the gas container, the outer surface area of gas molecules and outcome of the force in the thermodynamic conversion. Thermodynamic conversion goes through a system that is called a heat engine. The heat engine is two kinds. 1) Internal combustion engine, example petrol engine, diesel engine. 2) The external combustion engine, example steam engine. Thermodynamic appears, a role of internal or external combustion of gases as well as expansion and compression of the inner surface area of a gas chamber of a heat engine. We already find in four articles of this author published in the International Journal of Fundamental Physical Science, Palchoudhury Gas theory is
independently capable of describing all kind of behaviour of gases. Palchoudhury Gas equation is (Palchoudhury, 2017a)

$$
\begin{equation*}
P S=C n A T \tag{1}
\end{equation*}
$$

Here P is pressure, S inner surface area, C is constant of proportionality, n is number of moles, A covered outer surface area of tiny particles, T as temperature (Palchoudhury, 2017b)

$$
\begin{equation*}
P S=F \tag{2}
\end{equation*}
$$

F, here is defined force (Palchoudhury, 2016). By comparing Eq (1) and (2), we have $P S=F=C n A T$ and therefore PS -

CnAT $=0$. We can measure the capacity of a heat engine in two ways. Hence, the heat engine defined in two external and internal combustion. In a heat engine, a piston moves back and forth more and less in a closed gas chamber and leaves some force in every cycle during expansion and compression.
A piston moves back-and-forth (compression and enlargement) in a gas chamber more and less adiabatically depending on speedy repetition of the cycle of a piston. After expansion, the pressure in a gas chamber becomes lower, and the inner surface area becomes larger. A gas chamber may be in various size and shape like rectangular, square, cylinder etc.

Fig 1
In the Fig 1, the point A is a gas cylinder and D is a piston that can move back-and-forth through the cylinder. The initial and final positions of the piston in the cylinder is S_{i} and S_{f} respectively. Here S_{i} is the initial inner surface area before the expansion of gases and S_{f} is the final inner surface area after the expansion of gases so that $S_{i}>S_{f}$.

Fig 2
In Fig 2, A and B are rectangular and extended gas chamber respectively. The axis P and S also represents pressure and inner surface area of a rectangular shaped gas chamber. The product of pressure and inner surface area of a rectangular box may serve as PS.
S_{i} is the inner surface area of the gas chamber A and S_{f} is the inner surface area of the gas chamber including an extended gas chamber that is the final inner surface area.
In Fig 2, we can use a rectangular shaped gas chamber for demonstration. Here a rectangular gas chamber is in the Fig2, the length of the room positioned horizontally, the height
indicating vertically in the figure and wide is another side of the rectangular gas chamber. In this situation, suppose the dimension of the wide of the rectangular gas chamber is constant.
The length and height of the gas chamber are variable. We can describe the variable inner surface area of the rectangular gas chamber accordingly. In all parts the indexes i, f and d show the initial, final and difference/increment positions. By using these indexes for temperature, pressure, surface and forces we have; T_{i} and T_{f} as initial and final temperatures and T_{d} as difference of two temperature, P_{i} and P_{f} for initial and final pressure of gas respectively and S_{i} and S_{f} are the initial and final inner surface area of gas, F_{i} and F_{f} show initial and final force of the gas. Exchanged inner surface area is $S_{d}=S_{f}-S_{i}$, $F_{i}=P_{i} S_{I}, \mathrm{~F}_{\mathrm{f}}=\mathrm{P}_{\mathrm{f}} \mathrm{S}_{\mathrm{f}}$ and Force discharge $\mathrm{F}_{\text {disc }}=\mathrm{F}_{\mathrm{f}}-\mathrm{F}_{\mathrm{i}}$, $\mathrm{H}_{\text {disc }}$ is the converts of $\mathrm{F}_{\text {disc }}, \mathrm{W}$ is the converts of $\mathrm{H}_{\text {disc }}(1 \mathrm{Kcl}=4.1868 \mathrm{KJ})$. The discharged force can be measured by

$$
\begin{equation*}
F=\left(P_{f} S_{f}-P_{i} S_{i}\right) \tag{3}
\end{equation*}
$$

Fig 3
The above graph shows the pressure and inner Surface area Line. The product of pressure and inner surface area $=$ Force. Left end the pressure line shows pressure (164.09) and right end (142.69).
The left end of the inner surface area line shows inner surface area (0.656) and right end (0.69). All data are available in table -1 . Again, $\mathrm{F}=\mathrm{CnAT}$.
In Fig 3, we can use a rectangular shaped gas chamber for demonstration. Temperature (T) represents vertically, and A is a covered outer surface area of tiny particles serves horizontally. Therefore, CnAT = F. Suppose, a rectangular gas chamber marked doted located in the figure-3 shows the inner surface area of a gas chamber. Naturally, length situated horizontally, and height is determined vertically and wide is another side of the gas chamber at constant. The coloured rectangular box represents the outer surface of the area of molecules covered by the heat waves in the gas chamber.

Table 1 Behaviour of gases under compression and
expansion effect on inner Surface is in the adiabatic process (Palchoudhury, 2018)

| Common |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Gases |$\quad \mathbf{V}$

Naturally, length situated horizontally, and height vertically located and wide is another side of the box. In this situation, suppose, the dimension of the wide of the rectangular capacity is at constant. The length and height of the gas chamber are variable. We can describe the variable covered outer surface area accordingly. Temperature (T) vertically, A as inner surface area horizontally, T_{i} and T_{f} are the initial and final temperature of a gas respectively. A_{i} and A_{f} are the initial and final covered outer surface area of tiny particles of a gas.

$$
\begin{equation*}
\mathrm{A}_{\mathrm{d}}=\mathrm{A}_{\mathrm{f}}-\mathrm{A}_{\mathrm{i}}, \mathrm{~F}_{\mathrm{i}}=\mathrm{CnA}_{\mathrm{i}} \mathrm{~T}_{\mathrm{i}} \tag{4}
\end{equation*}
$$

and

$$
\begin{gather*}
\mathrm{F}_{\mathrm{f}}=\operatorname{CnA}_{\mathrm{f}} \mathrm{~T}_{\mathrm{f}} \tag{5}\\
\mathrm{~F}=\operatorname{Cn}\left(\mathrm{A}_{\mathrm{f}} \mathrm{~T}_{\mathrm{f}}-\mathrm{A}_{\mathrm{i}} \mathrm{~T}_{\mathrm{i}}\right)=-\operatorname{Cn}\left(\mathrm{A}_{\mathrm{f}} \mathrm{~T}_{\mathrm{f}}-\mathrm{A}_{\mathrm{i}} \mathrm{~T}_{\mathrm{i}}\right)\left(\mathrm{A}_{\mathrm{i}} \mathrm{~T}_{\mathrm{i}}>\mathrm{A}_{\mathrm{f}} \mathrm{~T}_{\mathrm{f}}\right) \tag{6}
\end{gather*}
$$

Here the negative sign indicate internal force losses and converts into extension inner surface area, the magnitude PS
and CnAT is same, $F_{\text {disc }}=F_{f}-F_{i}, \mathrm{H}_{\text {disc }}$ is the converts $\mathrm{F}_{\text {disc }}$, $H_{\text {disc }}=W$ work convert $(1 \mathrm{Kcl}=4.1868 \mathrm{KJ})$.

Fig 3
In Fig 3, colored box is the representation of the outer surface area of tiny particles of a gas. A represents an Outer surface area of gas. A_{i} serves the outer surface area of the initial stage of a gas. A_{f} represents the decreased outer surface area of the final state of gas after the extension of the inner surface of a gas. T_{i} and T_{f} are the initial and final temperature of gas respectively.

Table 2 Behaviour of gases under compression and
expansion effect on covered the outer surface area in the adiabatic process (Palchoudhury, 2018)

Common Gases	$\mathbf{V}\left(d m^{3}\right)$	Gas constant MPa/Mole-Kelvin	A_{i}	$\mathrm{T}_{\mathrm{i}} K$	$\mathrm{A}_{\text {f }}$	$\mathrm{T}_{\mathrm{f}} K$	F_{i}	F_{f}	Gases discharges after adiabatic expansion	
									$\mathrm{F}_{\mathrm{disc}}$	$\mathrm{H}_{\text {disc }}$
CO_{2}	0.05	6.680704501	0.059	273	0.056	261.13	107700436.37	98335181.00	9365255.36	71.63
	0.2	6.680704501	0.005	273	0.005	261.13	8813175.41	8046812.33	766363.08	5.86
	22.4	6.680704501	0.002	273	0.002	261.13	3873704.03	3536860.20	336843.83	2.58
He	0.2	6.680704501	0.012	273	0.011	261.13	21151318.25	19312073.18	1839245.06	14.07
Ne	0.2	6.680704501	0.011	273	0.010	261.13	19642006.82	17934006.23	1708000.59	13.06
H	0.2	6.680704501	0.011	273	0.011	261.13	20627734.13	18834018.12	1793716.01	13.72
Ar	0.2	6.680704501	0.009	273	0.009	261.13	16736743.54	15281374.54	1455369.00	11.13
0	0.2	6.680704501	0.010	273	0.009	261.13	17480533.09	15960486.74	1520046.35	11.63
\mathbf{N}	0.2	6.680704501	0.010	273	0.009	261.13	17513337.08	15990438.21	1522898.87	11.65
CO	0.2	6.680704501	0.009	273	0.009	261.13	17220252.77	15722839.49	1497413.28	11.45
CH4	0.2	6.680704501	0.008	273	0.008	261.13	14439592.78	13183976.02	1255616.76	9.60
NH3	0.2	6.680704501	0.003	273	0.003	261.13	5571507.79	5087028.86	484478.94	3.71

CONCLUSION

According to our discussions it is show that we can measure convertible force in two ways more accurately either by

1) $\mathrm{F}=\operatorname{Cn}\left(\mathrm{A}_{\mathrm{f}} \mathrm{T}_{\mathrm{f}}-\mathrm{A}_{\mathrm{i}} \mathrm{T}_{\mathrm{i}}\right)$ or 2) $\mathrm{F}=\left(\mathrm{P}_{\mathrm{f}} \mathrm{S}_{\mathrm{f}}-\mathrm{P}_{\mathrm{i}} \mathrm{S}_{\mathrm{i}}\right)$. We can predict the convertible force from first equation more accurately as Cn is the quantity of fuel, from general observation final and initial temperature (T_{f} and T_{i}) and final and initial covered outer surface area (A) according to Palchoudhury equation $P S=C n A T$. We also predict the

REFERENCES

Palchoudhury, S. (2016). A Modification In Behavior of Gases. International Journal of Fundamental Physical Sciences (IJFPS), 6(3), 13-16.

Palchoudhury, S. (2017a). About Internal Force of Gases. International Journal of Fundamental Physical Sciences (IJFPS), 7(4), 34-37.
convertible force from the second equation more accurately from general observation final and initial pressure and final and initial inner surface area of the gas chamber.

ACKNOWLEDGEMENT

I, the author, express deeply at this moment sincere gratefulness to the Editor-in-Chief and editorial staff of the Internal Journal Fundamental Physical Science (IJFPS) for their valuable suggestion for correction the manuscript.

Palchoudhury, S. (2017b). Brownian motion and infrared wave force. International Journal of Fundamental Physical Sciences (IJFPS), 7(2), 23-24.
Palchoudhury, S. (2018). Specific heat of a gas is same in both Isochoric and Isobaric process. International Journal of Fundamental Physical Sciences (IJFPS), 8(2), 79-82.

