Multiple positive solutions for some P-Laplacian nonlinear problem at infinity

Robabeh Sahandi Torogh
Department of Mathematics, Varamin-Pishva branch, Islamic Azad University Varamin, Iran
sahandi@iauvaramin.ac.ir

(Received July 2017 ; Published Sep 2017)

Abstract

In recent years, boundary value problem of second-order have received a lot of attention. In this paper, I study the existence of positive solutions for a class of p-Laplacian boundary value problem at infinity. The fixed point theorems in cones is the our main tools to prove the existence of solutions. I provide sufficient conditions under which this system has solution. I establish some propositions to prove the existence of positive solutions for these equations.

Keywords: Boundary value problem, Positive solution, (p,q) -Laplacian system, Fixed point

DOI:10.14331/ijfps.2017.330105

INTRODUCTION

In recent years, boundary value problems have received a lot of attention. For example (Liang \& Zhang, 2009; Pang, Lian, $\& \mathrm{Ge}, 2007$) have studied the existence of positive solutions for some boundary value problems.
In this paper, we study the existence of positive solutions for the following system:

$$
\begin{align*}
& \left\{\begin{array}{l}
\left(\phi_{p}\left(u^{\prime}\right)\right)^{\prime}+m(t) f(u, v)=0, \\
\left(\phi_{p}\left(v^{\prime}\right)\right)^{\prime}+n(t) g(u, v)=0
\end{array},\right. \tag{1}\\
& \begin{cases}u(0)-\alpha_{0}\left(u^{\prime}(\eta)\right)=0, & u^{\prime}(+\infty)=0, \\
v(0)-\beta_{0}\left(v^{\prime}(\xi)\right)=0, & v^{\prime}(+\infty)=0\end{cases} \tag{2}
\end{align*}
$$

Where

$$
\phi_{p}(s)=|s|^{p-2} s, p>1, \phi_{q}=\left(\phi_{p}\right)^{-1}, \frac{1}{p}+\frac{1}{q}=1
$$

$\eta, \xi \in(0,+\infty), m, n:[0,+\infty) \rightarrow[0,+\infty)$ have countably many singularities on $[0,+\infty) . \alpha_{0}, \beta_{0}$ are functions which satisfy the conditions that there are nonnegative $\alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}$ such that

$$
\alpha_{1} x \leq \alpha_{0}(x) \leq \alpha_{2} x \quad, \quad \beta_{1} x \leq \beta_{0}(x) \leq \beta_{2} x \quad \text { for } \quad x, y \in \mathfrak{R} .
$$

Liang \& Zhang, (2009), studied the existence of positive solutions for

$$
\left\{\begin{array}{c}
\left(\phi\left(u^{\prime}(t)\right)\right)^{\prime}+a(t) f(t, u(t))=0,0 \in[0,+\infty) \\
u(0)-B_{0} u^{\prime}(\eta)=0, \quad u^{\prime}(+\infty)=0
\end{array}\right.
$$

Where $\phi(s): \mathfrak{R} \rightarrow \mathfrak{R}$ is an increasing homomorphism and $\phi(0)=0 . \eta \in(0,+\infty), a:[0,+\infty) \rightarrow[0,+\infty)$.

Now, we assume that the following conditions:
H1) $f, g \in C\left([0,+\infty)^{2},[0,+\infty)\right), \quad f(0,0) \neq 0, g(0,0) \neq 0 \quad$ on any subinterval of $[0,+\infty)$ and when u, v are bounded, $f((1+t) u,(1+t) v), g((1+t) u,(1+t) v)$ are bounded on $[0,+\infty)^{2}$.
$\left.H_{2}\right)$ There exists a sequence $\left\{t_{i}\right\}_{i=1}^{\infty}$ such that $1 \leq t_{i+1} \leq t_{i}$, $\lim _{i \rightarrow+\infty} t_{i}=t_{0}<\infty, t_{0}>1, \lim _{t \rightarrow t_{i}} m(t)=\infty, i=1,2, \cdots$, and

$$
\begin{align*}
& \int_{0}^{+\infty} \phi_{p}^{-1}\left(\int_{s}^{+\infty} m(t) d t\right) d s<+\infty \\
& \int_{0}^{+\infty} \phi_{p}^{-1}\left(\int_{s}^{+\infty} n(t) d t\right) d s<+\infty \tag{3}
\end{align*}
$$

H_{3}) There exists a sequence $\left\{t_{i}\right\}_{i=1}^{\infty}$ such that $0<t_{i+1}<t_{i}<1, \lim _{i \rightarrow+\infty} t_{i}=t_{0}<\infty, t_{0}>1, \lim _{t \rightarrow t_{i}} a(t)=$ $\infty, i=1,2, \cdots$ and (3) holds.

SOME DEFINITIONS AND FIXED POIN THEOREMS

Definition (1)

Let $(X,\|\|$.$) be a real Banach space and a non-empty, closed,$ convex C subset of X is called a Cone of X, If it satisfies the following conditions:
i) If $x \in C$ and $\lambda \geq 0$ implies that $\lambda x \in C$, ii) If $x \in C$ and $-x \in C$ implies that $x=0$,
Every cone C subset of X includes an ordering in X which is given by $x \leq y$ if and only if $y-x \in C$.

Definition (2)

A map $\psi: P \rightarrow[0,+\infty)$ is called nonnegative continuous concave functional provided ψ is nonnegative, continuous and satisfies,

$$
\psi(t x+(1-t) y) \geq t \psi(x)+(1-t) \psi(y)
$$

for all $x, y \in P$ and $t \in[0,1]$.
Similarly, we say the map β is a nonnegative continuous convex functional on a cone P of $\mathrm{X} \quad \beta: P \rightarrow[0,+\infty)$ is continuous and $\beta(t x+(1-t) y) \geq t \beta(x)+(1-t) \beta(y)$ for all $x, y \in P$ and $t \in[0,1]$. The main tool of this paper is the following fixed-point:

Theorem (3) (Deimling, 2010) .
Let E be a Banach space and P subset of E be a cone in E . let $r>0$ define $\Omega_{r}=\{x \in P \mid\|x\|<r\}$. Assume that $T: P \cap$ $\overline{\Omega_{r}} \rightarrow P$ is completely continuous operator such that $T x \neq x$ for $x \in \partial \Omega_{r}$,
i) If $\|T u\| \leq\|u\|$ for $u \in \partial \Omega_{r}$ then $i\left(T, \Omega_{r}, P\right)=1$
ii) If $\|T u\| \geq\|u\|$ for $u \in \partial \Omega_{r}$ then $i\left(T, \Omega_{r}, P\right)=0$

PRELIMINARIES AND LEMMAS

Let,

$$
\begin{aligned}
E=\{(u, v) \in & c[0,+\infty) \\
& \times c[0,+\infty) \left\lvert\, \sup _{0 \leq t} \frac{|u(t)|}{1+t}<\infty\right., \\
& \sup _{0 \leq t} \frac{|u(t)|}{1+t}<\infty
\end{aligned}
$$

Then E is a banach space with the norm $\|(u, v)\|=\|u\|+$ $\|v\|$ where $\|u\|=\sup _{0 \leq t} \frac{|u(t)|}{1+t}<+\infty$.
Define cone K subset of E by
$K=$
$\left\{(u, v) \in E \mid u, v\right.$ are concaves, $\left.\lim _{t \rightarrow \infty} u^{\prime}(t)=0, \lim _{t \rightarrow \infty} v^{\prime}(t)=0,\right\}$
Lemma (4) (Liang \& Zhang, 2009).
Suppose H_{2} holds. Then for any $\gamma \in(1,+\infty)$ which satisfies $0<\int_{\frac{1}{\gamma}}^{\gamma} m(t) d t<+\infty, 0<\int_{\frac{1}{\gamma}}^{\gamma} n(t) d t<+\infty$, and the functions

$$
\begin{array}{r}
K_{1}(t)=\int_{\frac{1}{s_{0}}}^{t} \phi_{p}{ }^{-1}\left(\int_{s}^{s_{0}} m(\rho) d \rho\right) d s+\alpha_{1} \phi_{p}{ }^{-1}\left(\int_{t}^{s_{0}} n(\rho) d \rho\right) \\
K_{2}(t)=\int_{\frac{1}{s_{0}}}^{t} \phi_{p}{ }^{-1}\left(\int_{s}^{s_{0}} n(\rho) d \rho\right) d s+\beta_{1} \phi_{p}{ }^{-1}\left(\int_{t}^{s_{0}} n(\rho) d \rho\right)
\end{array}
$$

Are continuous and positive on $\left[\frac{1}{s_{0}}, s_{0}\right]$.
In addition $H_{i}=\min _{t \in\left[\frac{1}{s_{0}}, s_{0}\right]} K_{i}(t)>0, i=1,2$.
Lemma (5) (Liang \& Zhang, 2009).
Let u be a nonnegative concave function on $[0,+\infty)$ and $\lim _{t \rightarrow \infty} u^{\prime}(t)=0$, and $[a, b]$ be a subset of $(0,+\infty)$.

Then $u(t) \geq \lambda(t)\|u\|$ where $\lambda(t)=\left\{\begin{array}{l}\sigma, t \geq \sigma \\ t, t \leq \sigma\end{array}\right.$ and
$\sigma=\inf \left\{\xi \in[0,+\infty): \sup _{0 \leq t<+\infty} \frac{|u(t)|}{1+t}=\frac{|u(\xi)|}{1+\xi}\right\}$
Now, we define an operator

$$
\begin{aligned}
& T: K \rightarrow c[0,+\infty) \times c[0,+\infty) \\
& \quad T(u, v)(t)=\left(T_{1}(u, v), T_{2}(u, v)\right)(t)
\end{aligned}
$$

Such that

$$
\begin{align*}
& T_{1}(u, v)=\int_{0}^{t} \phi_{p}^{-1}\left(\int_{s}^{+\infty} m(\rho) f(u(\rho), v(\rho)) d \rho\right) d s+ \\
& \alpha_{0} \phi_{p}^{-1}\left(\int_{t}^{s_{0}} m(\rho) f(u(\rho), v(\rho)) d \rho\right), \tag{4}\\
& T_{2}(u, v)=\int_{0}^{t} \phi_{p}^{-1}\left(\int_{s}^{+\infty} n(\rho) g(u(\rho), v(\rho)) d \rho\right) d s+ \\
& \beta_{0} \phi_{p}{ }^{-1}\left(\int_{t}^{s_{0}} n(\rho) g(u(\rho), v(\rho)) d \rho\right), \tag{5}
\end{align*}
$$

Lemma (6) (Liu, 2003)
Let W be a bounded subset of K . Then W is relatively compact in E if $\left\{\frac{w(t)}{1+t}\right\}$ are equicontinuous on any finite subinterval of $[0,+\infty)$ and for any $\varepsilon>0$ there exists $N>0$ such that $\left|\frac{x\left(t_{1}\right)}{1+t_{1}}-\frac{x\left(t_{2}\right)}{1+t_{2}}\right|<\varepsilon$, uniformly with respect to $x \in W$ as $t_{1}, t_{2} \geq$ N, where $W(t)=\{x(t): x \in W\}, t \in[0,+\infty)$.

Lemma (7)

Let H_{1}, H_{2}, H_{3} hold. Then $T: K \rightarrow K$ is completely continuous.

MAIN RESULT

Theorem (8)

Suppose that H_{1}, H_{2}, H_{3} hold. Let $\left\{\lambda_{k}\right\}_{k=1}^{+\infty}$ such that $\lambda_{k} \in$ $\left(t_{k}, t_{k+1}\right), k=1,2, \cdots$. Let $\left\{m_{k}\right\}_{k=1}^{+\infty}$ and $\left\{M_{k}\right\}_{k=1}^{+\infty}$ be such that $\quad M_{k+1}<\frac{\Gamma\left(\frac{1}{\lambda_{k}}\right)}{1+\lambda_{k}} m_{k}<m_{k}<q m_{k}<M_{k}$, and for $k \in N$, we assume that f, g satisfy,
$\left.\boldsymbol{H}_{4}\right) \quad f((1+t) u,(1+t) v) \geq \phi_{p}\left(q m_{k}\right), g((1+t) u,(1+$ $t) v) \geq \phi_{p}\left(q m_{k}\right)$
For
$(t, u, v) \in\left[\frac{1}{\lambda_{k}}, \lambda_{k}\right] \times\left[\frac{\Gamma\left(\frac{1}{\lambda_{k}}\right)}{1+\lambda_{k}} m_{k}, m_{k}\right] \times\left[\frac{\Gamma\left(\frac{1}{\lambda_{k}}\right)}{1+\lambda_{k}} m_{k}, m_{k}\right]$.
$\left.\boldsymbol{H}_{5}\right) f((1+t) u,(1+t) v) \geq \phi_{p}\left(Q M_{k}\right), g((1+t) u,(1+$ $t) v) \geq \phi_{p}\left(Q M_{k}\right)$,

For $(t, u, v) \in[0,+\infty] \times\left[0, M_{k}\right] \times\left[0, M_{k}\right]$
where

$$
\begin{gathered}
q \in\left(\Gamma_{1},+\infty\right), Q \in\left(0, \Gamma_{2}\right), \quad \Gamma_{1}=\frac{1+t_{0}}{L}, L>0, \\
\Gamma_{2}=\frac{1}{\max \left(\phi_{p}{ }^{-1}\left(\int_{0}^{+\infty} m(\rho) d \rho\right)\left(1+\alpha_{2}\right), \phi_{p}^{-1}\left(\int_{0}^{+\infty} n(\rho) d \rho\right)\left(1+\beta_{2}\right)\right)}
\end{gathered}
$$

Then the boundary value system (1) and (2) has infinitely many solutions $\left\{\left(u_{k}, v_{k}\right)\right\}_{k=1}^{+\infty}$ such that $m_{k} \leq\left\|\left(u_{k}, v_{k}\right)\right\| \leq$ $M_{k}, k=1,2, \cdots$.

Proof. We assume that the sequence $\left\{\Omega_{1 k}\right\}_{k=1}^{+\infty}$ and $\left\{\Omega_{2 k}\right\}_{k=1}^{+\infty}$ of open subsets of E be as following:
$\Omega_{1 k}=\left\{(u, v) \in K \mid\|(u, v)\|<2 m_{k}\right\}$,
$\Omega_{2 k}=\left\{(u, v) \in K \mid\|(u, v)\|<2 M_{k}\right\}, \quad k=1,2, \cdots$.
We know that $1<t_{0} \leq t_{k+1}<\lambda_{k}<t_{k}<+\infty, k=1,2, \cdots$, so from lemma (5) for $k \in N$ and $u, v \in K$ we have $u(t) \geq$ $\Gamma(t)\|u\|, t \in\left[\frac{1}{\lambda_{k}}, \lambda_{k}\right]$.

Let $k \in N$ and $(u, v) \in \partial \Omega_{1 k}$, then we have $2 m_{k}=\|(u, v)\|=\sup _{t \geq 0} \frac{|u(t)|}{1+t}+\sup _{t \geq 0} \frac{|v(t)|}{1+t} \geq \frac{\left|u\left(\frac{1}{\lambda_{k}}\right)\right|}{1+\lambda_{k}}+\frac{\left|v\left(\frac{1}{\lambda_{k}}\right)\right|}{1+\lambda_{k}}$

$$
\geq \frac{\Gamma\left(\frac{1}{\lambda_{k}}\right)}{1+\lambda_{k}}(\|(u, v)\|), t \in\left[\frac{1}{\lambda_{k}}, \lambda_{k}\right] .
$$

From $\left(H_{4}\right)$ we have $f((1+t) u,(1+t) v) \geq \phi_{p_{1}}\left(q m_{k}\right)$, we know that $\left(\frac{1}{t_{0}}, t_{0}\right) \subseteq\left[\frac{1}{\lambda_{k}}, \lambda_{k}\right]$, if $\left(H_{2}\right)$ holds, we consider three cases:
i) If $\eta \in\left[\frac{1}{t_{0}}, t_{0}\right]$: we have;

$$
\begin{aligned}
& \left\|T_{1}(u, v)\right\| \\
& =\sup _{t \geq 0} \frac{1}{1+t}\left|\begin{array}{l}
\int_{0}^{t} \phi_{p}{ }^{-1}\left(\int_{s}^{+\infty} m(\rho) f(u(\rho), v(\rho)) d \rho\right) d s \\
+\alpha_{0} \phi_{p}{ }^{-1}\left(\int_{\eta}^{+\infty} m(\rho) f(u(\rho), v(\rho)) d \rho\right)
\end{array}\right| \\
& \geq \frac{1}{1+t_{0}}\left(q m_{k}\right) \int_{\frac{1}{t_{0}}}^{\eta}{\phi_{p}}^{-1}\left(\int_{s}^{t_{0}} m(\rho) d \rho\right) d s \\
& +\alpha_{1} \phi_{p}^{-1}\left(\int_{\eta}^{t_{0}} m(\rho) d \rho\right)
\end{aligned}
$$

$$
=\frac{q m_{k}}{1+t_{0}} K_{1}(\eta)>\frac{L q m_{k}}{1+t_{0}}>2 m_{k}=\|(u, v)\| .
$$

ii) If $\eta \in\left(0, \frac{1}{t_{0}}\right)$ from (4) and $\left(H_{4}\right)$ and lemma (4) we see: $\left\|T_{1}(u, v)\right\|=$ $\left.\sup _{t \geq 0} \frac{1}{1+t} \right\rvert\, \int_{0}^{t}{\phi_{p}}^{-1}\left(\int_{s}^{+\infty} m(\rho) f(u(\rho), v(\rho)) d \rho\right) d s+$ $\alpha_{0}{\phi_{p}}^{-1}\left(\int_{\eta}^{+\infty} m(\rho) f(u(\rho), v(\rho)) d \rho\right) \mid$

$$
\begin{aligned}
\sup _{t \geq 0} \frac{1}{1+t} \alpha_{1} \phi_{p} & \left(\int_{\frac{1}{t_{0}}}^{t_{0}} m(\rho) f(u(\rho), v(\rho)) d \rho\right) \\
& \geq \frac{q m_{k}}{1+t_{0}} \alpha_{1} \phi_{p}^{-1}\left(\int_{\frac{1}{t_{0}}}^{t_{0}} m(\rho) d \rho\right)
\end{aligned}
$$

$=\frac{q m_{k}}{1+t_{0}} K_{1}\left(\frac{1}{t_{0}}\right)>\frac{L q m_{k}}{1+t_{0}}>2 m_{k}=\|(u, v)\|$.
iii) If $\eta \in\left(t_{0},+\infty\right)$. From (4), $\left(H_{4}\right)$ and lemma (4) we have $\left\|T_{1}(u, v)\right\|$

$$
\left.=\sup _{t \geq 0} \frac{1}{1+t} \right\rvert\, \int_{0}^{t} \phi_{p}^{-1}\left(\int_{s}^{+\infty} m(\rho) f(u(\rho), v(\rho)) d \rho\right) d s
$$

$$
+\alpha_{0} \phi_{p}^{-1}\left(\int_{\eta}^{+\infty} m(\rho) f(u(\rho), v(\rho)) d \rho\right) \left\lvert\, \geq \frac{q m_{k}}{1+t_{0}} K_{1}\left(t_{0}\right)\right.
$$

$$
>\frac{L q m_{k}}{1+t_{0}}>2 m_{k}=\|(u, v)\|
$$

Since

$$
\|T(u, v)\|=\left\|T_{1}(u, v)\right\|+\left\|T_{2}(u, v)\right\| \geq\|(u, v)\|
$$

so from theorem (3) implies that

$$
\begin{equation*}
\mathrm{i}\left(\mathrm{~T}, \Omega_{1 k}, K\right)=0 \tag{6}
\end{equation*}
$$

Suppose that $(u, v) \in \partial \Omega_{2 k}$ and $u, v \in\left[0, \mathrm{M}_{k}\right]$. Thus

$$
\begin{aligned}
& \frac{u(t)}{1+t} \leq \sup _{t \geq 0} \frac{|u(t)|}{1+t} \leq\|u\|=M_{k} \\
& \frac{v(t)}{1+t} \leq \sup _{t \geq 0} \frac{|v(t)|}{1+t} \leq\|v\|=M_{k}
\end{aligned}
$$

From $\left(H_{4}\right)$ we have

$$
f((1+t) u,(1+t) v) \leq \phi_{p}\left(Q M_{k}\right)
$$

so
$\left\|T_{1}(u, v)\right\|=$
$\left.\sup _{t \geq 0} \frac{1}{1+t} \right\rvert\, \int_{0}^{t}{\phi_{p}}^{-1}\left(\int_{s}^{+\infty} m(\rho) f(u(\rho), v(\rho)) d \rho\right) d s+$
$\alpha_{0}{\phi_{p}}^{-1}\left(\int_{\eta}^{+\infty} m(\rho) f(u(\rho), v(\rho)) d \rho\right) \mid \leq(1+$
$\left.\alpha_{2}\right) \phi_{p}^{-1}\left(\int_{0}^{+\infty} m(\rho) f(u(\rho), v(\rho)) d \rho\right) \leq Q M_{k}(1+$
$\left.\alpha_{2}\right) \phi_{p}^{-1}\left(\int_{0}^{+\infty} m(\rho) d \rho\right) \leq M_{k}=\|u\|=\frac{1}{2}\|(u, v)\|$.

Similarly we can see $\left\|T_{2}(u, v)\right\| \leq\|v\|=\frac{1}{2}\|(u, v)\|$.
Then

$$
\|T(u, v)\|=\left\|T_{1}(u, v)\right\|+\left\|T_{2}(u, v)\right\| \leq\|(u, v)\|
$$

for $(u, v) \in \partial \Omega_{2 k}$, Hence, from theorem (3) we have

REFERENCES

Deimling, K. (2010). Nonlinear functional analysis: Courier Corporation.
Liang, S., \& Zhang, J. (2009). The existence of countably many positive solutions for some nonlinear three-point boundary problems on the half-line. Nonlinear Analysis: Theory, Methods \& Applications, 70(9), 3127-3139.

$$
\begin{equation*}
\mathrm{i}\left(\mathrm{~T}, \Omega_{2 k}, K\right)=1 \tag{7}
\end{equation*}
$$

Thus from additivity the fixed-point index we have

$$
\mathrm{i}\left(\mathrm{~T}, \Omega_{2 k} \backslash \overline{\Omega_{1 k}}, K\right)=1
$$

and T has a fixed point in $\Omega_{2 k} \backslash \overline{\Omega_{1 k}}$ such that

$$
m_{k} \leq\|(u, v)\| \leq M_{k}, \text { for } \quad k \in N
$$

Liu, Y. (2003). Existence and unboundedness of positive solutions for singular boundary value problems on half-line. Applied Mathematics and Computation, 144(2), 543-556.
Pang, H., Lian, H., \& Ge, W. (2007). Multiple positive solutions for second-order four-point boundary value problem. Computers \& Mathematics with Applications, 54(9), 1267-1275.

