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ABSTRACT 

The simplest solution to Einstein's field equations is the Schwarzschild solution. This solution is not able to describe 

any non-spherical shaped objects. Some stars and galaxies are ellipsoidal. Consequently, the gravitational field around 

these objects should be different in comparison with the spherical form. This paper is considering a new line element 

so that we are able to construct not only spherical objects but also we are able to explain an ellipsoidal object too. This 

new line element is more accurate and complete than the Schwarzschild line element. In this research, we see that the 

Schwarzschild line element and its solution is only a part of the whole work, which we have done. For more 

consideration, we applied this metric to an arbitrary object in the next step. Moreover, we used this line element for 

the solution of a planetary orbit of an ellipsoid planet by using Einstein’s field equations. These equations used for the 

exterior solution of an ellipsoidal celestial object. 
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INTRODUCTION 

Gravitational field equations described by general theory of 

relativity (Einstein, 1916). These equations are able to explain 

the properties of gravitational field around celestial objects. The 

first person who applied these equations was the German 

astrophysicist Karl Schwarzschild (Schwarzschild, 1916). He 

solved these equations for the first time and described the 

gravitational fields only around spherically symmetric and non-

rotating objects in the static form. The exact solution to the 

Einstein field equations is the Schwarzschild metric. This 

solution is corresponding to the external gravitational field of a 

stationary and uncharged object. He ignored the effects of the 

star’s interior in his solution. However, Schwarzschild solution 

is the simplest solution of Einstein's field equations, but it is not 

able to describe non-spherical objects such as elliptical objects 

like stars and /or galaxies. The simple structures of elliptical 

galaxies are reflected in their place in Hubble’s Classification. 

They are characterized by a single number, the ellipticity 𝜀 =

10(1 − 𝑏/𝑎), where 𝑏 and 𝑎 are the projected angular extent of 

the short and long axis of the galaxy on the sky (Roger, 2006). 

In fact, most of the celestial objects like stars and planets are not 

exactly spherical but fairly ellipsoidal in shape. Therefore, the 

Schwarzschild solution is unsuitable for elliptical objects in 

shape. Certainly, to obtain the gravitational field around these 

types of objects, we need some more modification in our metric 

and line element too. The purpose of the present paper is to 

construct a framework for considering ellipsoidal shapes in 

general theory of relativity, which covers situations studied for 

all ellipsoidal objects. 

 ELLIPTICAL OBJECTS  

In a good approximation huge bodies like galaxies and stars-

cluster, are in the static form. Therefore, assumed rotation of 

these objects may not play an important role in our study and for 
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general purpose. Some of these objects are in the form elliptic 

and In the Euclidean geometry, the concept of an ellipsoid 

object, completely is clear but in the curved spaces, it has some 

different meaning. Since, the geometry of General Theory of  

Relativity (GTR) is based on Riemannian geometry, therefore, 

the curved space and its analysis is necessary. In this case, the 

perfect-fluid bodies, having an ellipsoidal shape and it is esential 

to determine the curvature of space and time in the presence of 

an ellipsoid ( Zsigrai 2008). We, therefore, try to find out a 

solution to the Einstein’s field equations for static and ellipsoidal 

shaped heavenly bodies where we are not much concerned with 

its rotation. In the absence of any mass point, the space time 

would be flat. Consider ordinary Minkowski space-time, 

described by the coordinates ),,( zyx , where the static line 

element is defined as: 

 

𝑑𝑠2 = 𝑐2𝑑𝑡2 + 𝑑𝑥2 − 𝑑𝑦2 − 𝑑𝑧2   (1) 

 

By performing the following coordinate transformations, 

(Landau and Lifshitz, 1987) 

 

𝑥 → (𝑟2 + 𝑎2)
1

2 sin 𝜃 cos 𝜑    
𝑦 → (𝑟2 + 𝑎2)1/2 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝜑 

𝑧 → 𝑟 cos 𝜃   ,     𝑡 → 𝑡 

      (2) 

on the metric given in (1), the metric in the new coordinate 

(Nikouravan, 2001)  is,  

𝑑𝑠2 = 𝑐2𝑑𝑡2 −
𝑟2 + 𝑎2𝑐𝑜𝑠2𝜃

𝑟2 + 𝑎2
𝑑𝑟2 − (𝑟2 + 𝑐𝑜𝑠2𝜃)𝑑𝜃2 + 

 
(𝑟2 + 𝑎2)𝑠𝑖𝑛2𝜃𝑑𝜑2      (3) 

In this coordinate frame, a  is a constant in the, yx  surface. The 

above line element (3) is valid only for a vacuum space and time. 

This line element in the presence of a mass point takes the 

following form  

 

𝑑𝑠2 = 𝑒𝜈𝑑𝑡2 − 𝑒𝜆 (
𝑟2 + 𝑎2𝑐𝑜𝑠2𝜃

𝑟2 + 𝑎2
) 𝑑𝑟2 − (𝑟2 + 𝑐𝑜𝑠2𝜃)𝑑𝜃2 

 

+(𝑟2 + 𝑎2)𝑠𝑖𝑛2𝜃𝑑𝜑2     (4) 

 

Here ve  and e  are as coefficient the parameters  and v , are 

function of r  and   only and c  is the velocity of light and 

supposed as unit )1( c . By using covariant, 𝑔𝑖𝑗
 

and 

contravariant, 𝑔𝑖𝑗 components ( )4,3,2,1, ji of the metric 

tensors (4) the values of non-vanishing first kinds of Christofell’s 

symbols for are;  

 

Γ1/11 = 𝑒𝜆 [
𝜆′(𝑟2 + 𝑎2𝑐𝑜𝑠2𝜃)

2(𝑟2 + 𝑎2)
+

𝑟

(𝑟2 + 𝑎2)
+

𝑟(𝑟2 + 𝑎2𝑐𝑜𝑠2𝜃)

(𝑟2 + 𝑎2)2
] 

Γ3/23 = 𝛤3/32 =  
1

2
(𝑟2 + 𝑎2) sin 2𝜃 

Γ1/12 = 𝛤1/21 = −𝑒−𝜆 [
𝜆̇(𝑟2 + 𝑎2𝑐𝑜𝑠2𝜃)

2(𝑟2 + 𝑎2)
+

𝑎2 𝑠𝑖𝑛2𝜃

2(𝑟2 + 𝑎2)
 ]  

Γ2/11 = 𝑒𝜆 [
𝜆̇(𝑟2 + 𝑎2𝑐𝑜𝑠2𝜃)

2(𝑟2 + 𝑎2)
−

𝑎2 𝑠𝑖𝑛2𝜃

2(𝑟2 + 𝑎2)
 ] 

Γ2/12 = 𝛤2/21 = −𝑟   ,    𝛤2/33 =
1

2
 (𝑟2 + 𝑎2)𝑠𝑖𝑛2𝜃 

𝛤2/44 = −𝑒𝑣 (
𝜈̇

2
) , 𝛤1/44 = −𝑒𝑣 (

𝜈′

2
)  

𝛤3/13 = −𝑟 𝑠𝑖𝑛2 𝜃  ,   𝛤1/22 = 𝑟  ,   𝛤1/33 = 𝑟 𝑠𝑖𝑛2𝜃    

Γ4/14 = 𝛤4/41 = 𝑒𝑣 (
𝑣′

2
),   𝛤4/24 = 𝛤4/42 =  𝑒𝑣 (

𝑣̇

2
) 

      (5) 

Also the second kinds of Christofell’s symbols are as, 

2
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      (6) 

Here  𝜆′ =
𝜕𝜆

𝜕𝑟
,  𝜆̇ =

𝜕𝜆

𝜕𝜃
  , 𝑣′ =

𝜕𝑣

𝜕𝑟
 and 𝑣̇ =

𝜕𝑣

𝜕𝜃
  have their usual 

meaning. Consequently different values of Ricci tensors are: 

 

𝑅11 =
𝜐′′

2
+

𝜐′2

4
−

𝜆′𝜐′

4
−

𝜆′

𝑟

+ (
𝑒𝜆

2𝑟2
) [𝜆̈ +

𝜆̇2

2
+

𝜆̇𝜐̇

2
+ 𝜆 ̇ 𝑐𝑜𝑡𝑔𝜃]

+ [small terms  a2, a3or, a4] 
(7) 

𝑅22 = −1 + 𝑒−𝜆 + 𝑟𝑒−𝜆
(𝜐′ − 𝜆′)

2
+

𝜆̈

2
+

𝜐̈

2
+

(𝜆̇2 + 𝑣̇2)

4
+ 

[small terms  a2, a3or, a4] 
      (8) 
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𝑅33 = 𝑆𝑖𝑛2𝜃 [−1 + 𝑒−𝜆 + 𝑟𝑒−𝜆 (𝜐′−𝜆′)

2
+ (

𝜆̇+𝜐̇

2
) 𝑐𝑜𝑡𝑔𝜃]  

      (9) 

𝑅44 = −(𝑒υ−𝜆) [
𝜐′′

2
+

𝜐′2

4
−

𝜆′𝜐′

4
+

𝜐′

𝑟
] − 

(
eυ

2𝑟2) [𝜐̈ +
𝑣̇2

2
+

𝜆𝑜𝜐𝑜

2
+ 𝜐𝑜cotgθ]   (10) 

 

With Mathematica, we are able to calculate all components of 

Ricci tensors (Nikouravan 2009).  All components of Ricci 

tensors  𝑅𝑖𝑗’s, (7), (8), (9) and, (10) for 𝜃 approximately 

constant, are identically to zero and simplifies to the following 

form, 

r
R

 










442

2

11    (11) 

11
22

22 













  rr

eR
    (12) 


 2

33 sin11
22
























  rr

eR    (13) 













 






 

r
eR


 2

222

1 2

44
  (14) 

The solution of these equations (11), (12), (13), and (14) for 𝜆
 

and 𝜈 we get, 𝑟−1(𝜕𝜐 𝜕𝑟⁄ ) + (𝜕𝜆 𝑟𝜕𝑟⁄ ) = 0. After integration 

we have 𝜆 + 𝑣 = 𝐴. The value of 𝐴 is a constant of integration 

which may be set equal to zero. For large  𝑟 , the values 𝜆 = 0 

and 𝑣 = 0 then 𝜆 = −𝑣 By substituting in the above equations 

we get, 𝑒𝑣 (1 +
𝑟𝜕𝑣′

𝜕𝑟
) = 1. After integrating we have 𝑟𝑒𝑣 = 𝑟 +

𝐵. Here the value of 𝐵  being constant of integration i.e. 𝑒𝑣 =
𝑒−𝜆 = 1 − 2𝑚/𝑟 , where we have put 𝐵 = −2𝑚. This is done 

in order to facilitate the physical interpretation of 𝑚 as the mass 

of the gravitating particle. Finally, the suggested line element 

due to a static and ellipsoidal isolated gravitating mass point get 

in the following form (Nikouravan, 2011).  

 

𝑑𝑠2 = (1 −
2𝑚

𝑟
) 𝑑𝑡2 −

1

(1 −
2𝑚

𝑟
)

(
𝑟2 + 𝑎2𝑐𝑜𝑠2𝜃

𝑟2 + 𝑎2
) 𝑑𝑟2

− (𝑟2 + 𝑐𝑜𝑠2𝜃)𝑑𝜃2 − (𝑟2 + 𝑎2)𝑠𝑖𝑛2 𝜃 𝑑𝜑2 

      (15) 

Here the meaning of 𝑚 is as Schwarzschild equation. Indeed, if 

we set 𝑚 = 𝐺𝑀/𝑐2 then we see that, for large value  𝑟  𝑔 ≈
𝐺𝑀/𝑟2 so that 𝑀

 
is the mass of central body. In relativistic units 

(𝑐 = 𝐺 = 1) we simply have 𝑚 = 𝑀 (Wolfgang, 2006) and 

dimensionally are correct. In equation (16), if we put 𝑎 = 0 then 

it become Schwarzschild line element. In fact Schwarzschild 

metric is only a spherically symmetric solution of Einstein’s 

equation for the vacuum space (Chandrasekhar, 1983).  

𝑑𝑠2 = (1 −
2𝑚

𝑟
) 𝑑𝑡2 −

1

(1−
2𝑚

𝑟
)

𝑑𝑟2 − 𝑟2𝑑𝜃2 − 𝑟2𝑠𝑖𝑛2 𝜃 𝑑𝜑2  

      (16) 

Equation (15) is more general and complete as compared with 

equation (16). The line element (15) is not only valid for 

ellipsoidal form of any object but also it can explain the spherical 

form of object too. 

PLANETARY ORBITS 

Here we consider a solution for planetary orbits by using 

Einstein’s field equations (Einstein, 1916). In terms of curved 

coordinate system ix , we start with the line element (15) and 

attempt to solve these equations as exterior solution for a planet 

going around an ellipsoidal star. Indeed, we need to have 

equations that determine the connection field surrounding a 

heavy elliptical object such that it describes the gravitational 

field correctly (Hooft 2009). Consequently it is assumed that the 

ellipsoidal star remains at the center and the planet is rotating 

around the star. Therefore, the geodesic differential equations of 

the ellipsoid and their space-time trajectories are given by,  

0
2


ds

dx

ds

dx

ds

dx 





   (17) 

In the line element (15), 𝑚 and  𝑟, are the mass and radius of 

ellipsoidal star, respectively. By using (6) for the non-vanishing 

Christofell’s symbols of second kind, and (18), we have four 

differential equation of motion as below. 
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      (18) 
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      (19) 
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      (20) 
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     (21) 

The above relations are the equations of motion of a secondary 

going around an ellipsoidal star. If the planet moves initially in a 

plane 𝜃 =
𝜋

2
 then  

𝑑𝜃

𝑑𝑠
= 0, and the above equations are, 
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The solution of these equations yields, 
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By integrating the above equations we have, 

k
ds
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d
ar  

,)( 22 ,     

    (26) 

Where ℎ  and 𝑘 are constants of integration. The constant ℎ is a 

measure of the angular momentum of the motion. Further, 

instead of working with equation (24) due to its troublesome 

integration, we use the line element (4). By using 
𝑑𝜃

𝑑𝑠
= 0  , 𝜆 =

−𝑣 , ℎ and 𝑘 as constant of integration, we get,  
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Using )/()/()/()/()/( 2  ddrrhdsdddrdsdr  and

rmev /21  the equation (27) becomes 
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Now, if we substitute 𝑢 = 1/𝑟 in the above equation and after 

rearranging, we get 
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Differentiating the above equation with respect to   we can 

easily get 
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      (30) 

Equation (30) represents the relativistic differential equation of 

the path of a planet going around an ellipsoidal star. Here 𝑟 and 

𝜑
 
are the special coordinates, and 𝑑𝑠 is an element of the proper 

time as measured by a clock moving with the planet. In 

approximation small terms multiplied with 𝑢3 and greater 

powers of 𝑢 in equation (30) are still small and hence can be 

approximated to zero and get,  
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Therefore, the relativistic differential equation of the orbit of the 

planet, equation (31), can be compared with the corresponding 

Schwarzschild line element for a spherical planet which is as 

below. 
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and Newtonian equation, (Ramsey,1961) 
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RESULTS AND DISCUSSION 

By comparing line elements (4) and (15) we get the values of e

and ve  are in terms of mass of the object or mass of the 

gravitating particle, like Schwarzschild. The relation between 

these two factors, is
 

rmee /21  . By applying these 

values, we get the line element in the form of (17) as follows, 
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The line element (15) is more complete than Schwarzschild line 

element (16). The line element (16) can be obtained by 

substituting 0a  in (15). But the main difference between (15) 

and (16) is the value of a . For an ellipsoid, 0a  and for a 

spherical object 0a . The equation (16) is valid only for 

spherical and is not possible to find out any non-spherical line 

element. The lines of gravitational field around the spherical and 

elliptical objects certainly are in different form. Therefore, the 

motion of secondary around the first object, in case of elliptical 

and/or spherical, certainly should be different. Hence the 

equations of motion, for elliptical in shape, is calculated using 

general theory of relativity and the result is (31).  

The equation (31) simply shows the effect of elliptical objects in 

the space and also is the differential equation of motion. By 
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substituting, 0a  in (31), we get (32), which describes the same 

conditions for the Schwarzschild line element. It means, 

Schwarzschild line element (16) and it’s relating calculated 

equations of motion, for planetary orbit (32), all are results of 

(15) and (31), respectively. Certainly the Newtonian differential 

equation of motion (33) also is the next result of equation (15) 

and (31). The pictures given below show the results of 

calculations and differential equations of motion for flat, 

spherical and elliptical objects separately. 

CONCLUSION 

The aim of this work was to obtain a new form of line element 

which should be able to describe gravitational field around an 

elliptical object with solution of general theory of relativity. 

This solution not only describes the gravitational field around 

elliptical objects in shape but also it can explain the field around 

spherical objects too. One of the applications of this line element 

is planetary orbit of an object around the elliptical object. 

Differential equations of motion for planetary orbits in elliptical 

and spherical are different. For elliptical objects we found a new 

term as mentioned in the equation (31). 

 

 
 

The differential equation of motion of elliptical objects for (

0a ) is same as differential equation of motion for spherical 

objects. Consequently, elliptical line element (16) and 

differential equation of motion (31) are more general and 

accurate than spherical form. 
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