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ABSTRACT 

In this Paper, the nonlinear free and force vibration of a single-walled carbon nanotube (SWCNT) with simply supported ends is 

investigated based on von Karman’s geometric nonlinearity. The SWCNT described as an individual shell and the Donnell’s 

equations of cylindrical shells are used to obtain the governing equations. The Galerkin's procedure is used to discretized partial 

differential equations of the governing into the ordinary differential equations of motion. The method of averaging is applied to 

analyze the nonlinear vibration of (10, 0), (20, 0) and (30, 0) zigzag SWCNTs in the analytical calculations. The effects of the 

nonlinear parameters, different aspect ratios, different circumferential wave numbers and longitudinal half-wave numbers are 

investigated. Both free and forced motions (due to harmonic excitation) are considered. It is shown that (30, 0) zigzag SWCNT 

has less nonlinear behavior than the other CNTs for a constant aspect ratio. The type of nonlinearity is determined by the aspect 

ratio. It is seen from the results that for Small values of aspect ratios, the vibration behavior is softening type for the low 

amplitudes, and it is hardening type for the large amplitudes. And for large value of the aspect ratio, the vibration behavior is 

hardening type for all amplitudes. 
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INTRODUCTION 

In recent years, extensive research has been carried out on 

CNTs because of their novel mechanical, physical, and 

electrical properties. The mechanical properties of CNTs have 

been extensively investigated by researchers in mechanical 

fields. Experimental measurements and theoretical analyses 

have shown that CNTs possess excellent mechanical stiffness 

and strength. The study of vibration in CNTs is currently a 

major topic of interest, which can be used to further understand 

their dynamic mechanical behavior. There are three major 

methods for simulating the mechanical properties of CNTs: 

experiments, molecular dynamics (MD) and the continuum 

mechanics. Due to the experimental calculations at the 

nanoscale are difficult and the MD simulations remain difficult 

for large-scale systems, continuum mechanical models have 

been effectively used to study mechanical behaviors of carbon 

nanotubes. Recently, many elastic continuum models have been 

widely and successfully used for studying the bending, 

buckling and vibrational behaviors of CNTs, including beam 

models and cylindrical shell models. The beam models 

employed are often developed on the basis of the Euler–

Bernoulli theory and the Timoshenko beam theory. And the 

shell models are often developed on the basis of Flügge theory 

and Donnell theory. For example, (Yokobson et al, 1996) used 

a traditional continuum shell model to predict the buckling of a 

single-walled Carbon nanotube (SWCNT) and compared it with 

the MD simulation. (Ru, 2005) proposed the buckling analysis 

of the CNTs with shell models. (Sun and Liu, 2007) 

investigated the free vibration of the multi-walled carbon 

nanotubes (MWCNTs), by using Donnell’s shell equations. 

(Zhang et al 2009) investigated critical buckling strains of 

axially loaded SWCNTs for both beam and cylindrical shell 

model. (Wang and Zhang, 2008)  used continuum shell model 

to investigate the deformation of SWCNT. Up until now, most 
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of the shell model investigations were limited to the linear 

vibration of nanotube, but investigations of the geometric 

nonlinearities behavior are seldom. Nanotubes can undergo 

large deformations within the elastic limit, so the nonlinear 

analysis is clearly essential. Therefore, nonlinear analysis is 

high important for getting better predictive models to study the 

vibration behavior of the CNTs. (Yan et al, 2008) modeled the 

nonlinear free vibration behaviors of double-walled carbon 

nanotubes in the context of the Donnell’s cylindrical shell and 

used the harmonic balance method to find the amplitudes-

frequency relationship. In this paper, free and forced vibrations 

of a SWCNT based on the shell model are investigated. The 

geometrical nonlinearity has been used in the continuum 

models for getting an accurate vibration behavior of a 

nanotube. The Galerkin's procedure and the method of 

averaging are employed in order to reduce the problem to the 

solution of nonlinear algebraic and nonlinear differential 

equations. The influences of the nonlinear parameters, different 

aspect ratios and the vibration modes on the nonlinear vibration 

behavior are examined analytically. The results show that 

nonlinear parameter controls the strength of nonlinearity. So, 

increasing in the nonlinear parameter causes the increment of 

nonlinear behavior. Another important parameter which 

influences on the nonlinear vibration is an aspect ratio, which 

changes the nonlinearity type of CNTs into softening or 

hardening types. It is seen from the results that small values of 

the aspect ratio generally effects on softening type and the large 

value of the aspect ratio causes the behavior to hardening type. 

 MATHEMATICAL FORMULATION 

Consider a thin-walled simply supported shell with radius of R, 

thickness h and length l. The cylindrical coordinate system (O; 

x, r, θ) is chosen, with the origin O placed at the center of one 

end of the shell. The displacements of the shell are denoted by 

u, v, and w, in the axial, circumferential and radial directions 

respectively. 

 

 
Figure1. Cylindrical shell representation of SWCNT 

 

When the shell deflection w is of the same order of the 

magnitude as the shell thickness h, results obtained by using the 

linear theories become quite inaccurate. Therefore, a theory of 

large deflections (Von Karman theory) developed in cylindrical 

coordinates. In Donnell’s nonlinear theory, only nonlinear 

terms that depend on w are retained, and all other nonlinear 

terms are neglected. The relationships between the strain and 

the displacement of Donnell’s nonlinear shell can be written as 

follows:   
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Where
x ,

 and 
 x

are shell strains and 
0,x ,

0,  , 
0, x
are 

middle surface strains and z is the distance of the arbitrary point 

of the shell from the middle surface. 
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Where 
xk , 

k and 
xk  change in curvature and torsion of the 

middle surface. The elastic strain energy U of a circular 

cylindrical shell is given by
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                            (5) 
By using Eqs. (1~5) the stress resultants and moment resultants 

can be written in the following form: 
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With Substituting Eqs. (6)and (7) into Eq. (5),the governing 

equations of the equilibriums base on the Donnell’s shell theory 

can be obtained as follows (Amabili,1999 ; Amabili, 1999): 
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F is the in-plane Airy stress function; q is the external 

excitation and the biharmonic operator in Eqs. (12), (13) is 

defined as:
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The forces per unit length in the axial, circumferential 

directions and shear force are given by: 
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In this study, the attention is focused on a finite, simply 

supported ends, circumferentially closed circular cylindrical 

shell with length l. The following boundary conditions are 

imposed as: 
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MATERIALS AND METHODS 

The radial displacement w is expanded by using the linear shell 

eigen modes as the basis; in particular, the flexural response 

may be written as follows (Nash;Watawala 1983; Amabili 

2003): 
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                            (12) 
Where m is the axial wave number (equal to the number of 

half-waves along the shell), and n is the circumferential wave 

number. The amplitude functions, A is an Unknown 

generalized time function of the vibration.  Substituting the 

expansion of w, Eq. (16), in the right-hand side of Eq. (13), and 

solving for the particular solution, we have (F. Pellicano 2002) 
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                            (13) 
A1, A2 and A3 values are not reported here for the sake of 

brevity. For solving Eq. (12) substitute Eqs. (16) and (17) into 

Eq.(12). But direct on is impossible. Thus, the Galerkin’s 

technique was employed to obtain an approximate solution. 

GALERKIN’S METHOD 

The Galerkin’s method employs any set of basic functions , 

approximates the nonlinear partial differential equation (PDE) 

by transforming it into a finite set of coupled ordinary 

differential equations (ODEs). The Galerkin projection of the 

equation of motion (12), in this case, may be expressed as 

(Amabili 2008): 
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Where the Galerkin’s weighting function is 
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After the evaluation of the integrals, an ordinary non-linear 

differential equation is obtained. 
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~  values are not reported here for the sake of brevity. 

 

AVERAGING METHOD 

The ordinary non-linear differential equation (20) cannot yet be 

solved exactly. But, an approximate solution can be obtained by 

the procedure known as the method of averaging (Ali hasan 

nayfe 1995). The unknown function )(tA is taken to be in the 

form, 
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In this paper the steady-state vibrations are considered, which 

means the average values A  and   remain steady with time. In 

this case, the average derivative )(t is identically zero, and 

equation (20) can be reduced to: 
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~  values are not reported here for the sake of brevity. The 

resulting of non-linear algebraic equations may conveniently be 

represented in terms of the dimensionless variables: 
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Where, 

mnw
 

is linear vibration frequency,  is nonlinearity 

parameter,  and  is non dimensional nonlinear vibration 

changes to linear vibration as 0 . With the increment of  

values the nonlinearity of vibration increases (Evensen 1967) 
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  values are not reported here for the sake of brevity 

RESULTS AND DISCUSSION 

Zigzag (10, 0), (20, 0) and (30,0) SWCNT have been 

investigated to analyse nonlinear vibration. The geometries of 

SWCNTs has been reported by Gupta et al (S.S. Gupta 2010). 

 

Table 1: Geometries of SWCNTs 

Tube (n, 

m) 

Radius 

(R) (Å) 
𝜐 h (Å) 

(10,0) 3.713 0.265 0.878 

(20,0) 7.420 0.238 1.251 

(30,0) 11.129 0.227 1.340 

 

Fig.2 shows the influence of large amplitudes on the free 

vibration frequencies of (10, 0), (20, 0) and (30, 0) zigzag 

CNTs with an aspect ratio 41/ . The axial and circumferential 

wave numbers are m=1 and n=1 respectively. The Figure shows 

that the vibration behavior is softening type for the low 

vibration amplitudes, and it is hardening type for the large 

amplitudes for each three nanotubes. The radius increasing 

makes the nonlinear parameter decreased. The (30, 0) CNT has 

the biggest radius among two others CNTs. So, it has less 

nonlinear behavior than the other CNTs. 

 
Figure 2. Influence of the large amplitudes on the vibration 

frequency for different nanotubes. 

 

Figure 3. Shows an influence of the large amplitudes on the 

free vibration frequencies (10, 0) zigzag SWCNT nanotubes 

with the different aspect ratios )4,2,4/1,2/1(   

 

 The axial and circumferential wave numbers are m = n =1. It is 

seen from the figure that for the small values of the aspect 

ratios )/( 21 , the vibration behavior is softening type in 

small amplitudes and hardening type in large amplitudes and 

shows that for )( 2 , the vibration behavior is hardening type 

for all amplitudes 

 
 

Figure 3. Influence of aspect ratio on vibration frequency 
).,,/,/( 424121  

 

Small values of the aspect ratios correspond to the long 

circumferential wave numbers and/or short axial wave numbers 

and/or increasing the length of the CNT. So, the CNTs with the 

length Rl 4 and circumferential wave number n=1 and an 

axial wave number m=1, 2, 8, 16 have the same results with 

figure 3. Fig. 4 shows the influence of large amplitudes on the 

free vibration frequencies of (10, 0) zigzag SWCNT with the 

different circumferential wave numbers (n=1, 2, 5). Consider 

the CNT with the length Rl 4 and axial wave number m=1. 

An increasing in the circumferential wave numbers causes the 

nonlinear parameter increased and decreases the aspect ratio. 

Therefore, as it is seen in Fig.4, the SWCNT has the more 

nonlinear behavior and more softening behavior in n = 5. 

 
Figure 4. Influence of the different circumferential wave 

numbers on the vibration frequencies. 
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In Fig. 5, the amplitude is plotted against the frequency for the 

forced vibration of (10, 0) zigzag SWCNT The axial and 

circumferential wave numbers are respectively m=1 and n=1 

and average excitation ..10q  In the fig.5a the dotted lines 

denote the frequency-amplitude relationships for free vibration 

(also known as the backbone curve) and the solid lines 

represent the forced response for )/( 41 . The results show 

that the nonlinear behavior of CNT is the softening type. Fig 5b 

is plotted for )( 2  and shows that the nanotube behavior is 

hardening type.  

 
(a) 

 
(b) 

Figure 5. Amplitude of forced vibration versus frequency of 

excitation for (a) 4110 /,.  q and (b) 210  ,.q . 

 

CONCLUSIONS 

In this paper, the nonlinear free vibrations of a SWCNT 

investigated based on von Karman’s geometric nonlinearity. 

The SWCNT is considered as a thin circular cylindrical shell 

with simply supported ends. Governing equations are obtained 

by Donnell’s shell theory.  The Galerkin's procedure and the 

method of averaging are employed for solving nonlinear 

equations. The influences of the nonlinear parameters, different 

aspect ratios and the vibration mode on the nonlinear vibration 

behavior are considered. Both free and forced motions (due to 

harmonic excitation) are considered. The results show that (30, 

0) zigzag SWCNT has less nonlinear behavior than the other 

CNTs for a constant aspect ratio. The degree of nonlinearity is 

dependent on wall thickness of CNTs, number of 

circumferential waves and radius of CNTs.  

The type of nonlinearity is determined by the aspect ratio. It is 

seen from the results that for Small values of the aspect ratio, 

the vibration behavior is softening type for the low amplitudes, 

and it is hardening type for the large amplitudes. And for large 

value of the aspect ratio, the vibration behavior is hardening 

type for all amplitudes. Small values of the aspect ratios 

correspond to the long circumferential wave numbers and/or 

short axial wave numbers and/or increasing the length of the 

CNT. The other considered parameters were an axial and the 

circumferential wave numbers. Decreasing of the axial wave 

number causes the increment of the aspect ratio and changes 

the CNT’s behavior. An increasing in the circumferential wave 

numbers causes the nonlinear parameter increased and 

decreases the aspect ratio. So, increasing in the circumferential 

wave numbers causes the increment of nonlinear behavior and 

softening behavior of CNT. 

 

 

Nomenclature 

 

 
R Radius of single-walled carbon nanotube 

h Nanotube wall thickness 

l Length of nanotube 

zx ,,  axial, circumferential and radial coordinates 

u, v, w axial, circumferential and radial displacements 

  xx ,,
 

Axial, circumferential and shear strains 

  xx ,0,0,0 ,,
 

middle surface strains 

  xx ,,
 

Kirchhoff stresses 

U Strain energy 

 xx NNN ,,
 

stress resultants 

 xx MMM ,,
 

Couple resultants 

4  
Biharmonic operator 

),,( txF   Stress function 

  Poissen 's ratio 
  Mass density 

E Young’s modulus 

D flexural rigidity 

m, n Axial and circumferential wave number 
  weighting function 

  Nonlinear parameter 

  Aspect ratio 

mnw
 

Linear vibration frequency 

  Non-dimensional frequency 

q  External excitation 
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