Von Von Neumann Entropy by Logarithmic Method

Mathematics-Physics

Authors

  • Bijan Nikouravan Department of Physics, Islamic Azad University (IAU),Varamin-Pishva Branch, Iran

DOI:

https://doi.org/10.14331/ijfps.2019.330132

Keywords:

Entropy, Von Neumann entropy, linearity

Abstract

The Von Neumann entropy plays a central role in the quantum information theory and is a concave function and following the property . In this paper, we introduce a new proof for the linearity of Von Neumann entropy in the rate without using the above inequality. Here the Von Neumann entropy is concave; that is, given weights   and density matrices . Roughly speaking, we will show that in the rate case, the Von Neumann entropy is linear without using Fannes inequality.

Downloads

Download data is not yet available.

Author Biography

Bijan Nikouravan, Department of Physics, Islamic Azad University (IAU),Varamin-Pishva Branch, Iran

Dr. Bijan Nikouravan

 

REFERNCES

Audenaert, K. M. (2007). A sharp continuity estimate for the von Neumann entropy. Journal of Physics A: Mathematical and Theoretical, 40(28), 8127.

Garbaczewski, P. (2005). Differential entropy and time. Entropy, 7(4), 253-299.

Jaeger, G. (2007). Quantum information: Springer.

Jaynes, E. T. (1965). Gibbs vs Boltzmann entropies. American Journal of Physics, 33(5), 391-398.

Kullback, S. (1968). Information Theory and Statistics. Courier Corporation. image analysis. Composites Science and Technology, 59(4), 543-545.

Neumann, J. v. (2013). Mathematische grundlagen der quantenmechanik (Vol. 38): Springer-Verlag.

Nielsen, M. A., & Chuang, I. L. (2000). Quantum information and quantum computation. Cambridge: Cambridge University Press, 2(8), 23.

Shannon, C. E. (1948). A mathematical theory of communication. Bell system technical journal, 27(3), 379-423.

Tomamichel, M., Colbeck, R., & Renner, R. (2010). Duality between smooth min-and max-entropies. IEEE Transactions on information theory, 56(9), 4674-4681.

von NEUMANN, J., & BEYER, R. T. (1955). Mathematische Grundlagen der Quantenmechanik. Mathematical Foundations of Quantum Mechanics... Translated... by Robert T. Beyer: Princeton University Press.

Published

2019-12-30

How to Cite

Nikouravan, B. (2019). Von Von Neumann Entropy by Logarithmic Method: Mathematics-Physics. International Journal of Fundamental Physical Science, 9(4), 55-58. https://doi.org/10.14331/ijfps.2019.330132

Issue

Section

ORIGINAL ARTICLES