Intra-Cavity Loss Element Method for Measurement of the Small Signal Gain of a TEA CO2 Laser

TEA CO2 Laser

Authors

  • M. Aram Laser and Optics Research School, Nuclear Science and Technology Research School, Atomic Energy Organization of Iran, Tehran, Iran,
  • Z. Porhasannejad Laser and Optics Research School, Nuclear Science and Technology Research School, Atomic Energy Organization of Iran, Tehran, Iran,
  • E. Aghayare Laser and Optics Research School, Nuclear Science and Technology Research School, Atomic Energy Organization of Iran, Tehran, Iran,
  • S. Behrouzinia Laser and Optics Research School, Nuclear Science and Technology Research School, Atomic Energy Organization of Iran, Tehran, Iran,

DOI:

https://doi.org/10.14331/ijfps.2012.330038

Keywords:

TEA CO2 laser, small-signal gain, intra-cavity losses

Abstract

The small-signal gain coefficient of a TEA CO2 laser has been measured through the implementation of a variable polarization intra-cavity loss element. Charging voltage dependence of the gain property of the laser has been investigated. The advantage of this method is that no probe laser system is required. The results have been agreed with experimental data obtained by conventional oscillator-amplifier method.

 

Downloads

Download data is not yet available.

Author Biography

S. Behrouzinia, Laser and Optics Research School, Nuclear Science and Technology Research School, Atomic Energy Organization of Iran, Tehran, Iran,

 

 

REFERENCES


Antropov, E., Silin-Bekchurin, I., Sobolev, N., & Sokovikov, V. (1968). Gain measurement in the CO< inf> 2</inf> laser discharge. Quantum Electronics, IEEE Journal of, 4(11), 790-796.
Aram, M., Soltanmoradi, F., & Behjat, A. (2004). Investigation on parallel spark array pre-ionization TEA CO2 laser. Paper presented at the Atomic and Molecular Pulsed Lasers V.
Aram, M., Soltanmoradi, F., Ghafori, S., & Behjat, A. (2005). Measurements of the small-signal gain and saturation intensity for a cw CO2 laser using an intracavity loss element. Quantum Electronics, 35(4), 341-343.
Armandillo, E., Kearsley, A., & Webb, C. (2000). A simple technique for measuring the gain of RGH lasers. Journal of Physics E: Scientific Instruments, 15(2), 177.
Behrouzinia, S., Sadighi-Bonabi, R., Parvin, P., & Zand, M. (2004). Temperature dependence of the amplifying parameters of a copper vapor laser. LASER PHYSICS-LAWRENCE-, 14(8), 1050-1053.
Behrouzinia, S., Sadighi, R., & Parvin, P. (2003). Pressure dependence of the small-signal gain and saturation intensity of a copper vapor laser. Applied optics, 42(6), 1013-1018.
Cheo, P. (1967). Effects of CO 2, He, and N 2 on the Lifetimes of the 00° 1 and 10° 0 CO 2 Laser Levels and on Pulsed Gain at 10.6 μ. Journal of Applied Physics, 38(9), 3563-3568.
Cheo, P. (1968). Relaxation of CO< inf> 2</inf> laser levels by collisions with foreign gases. Quantum Electronics, IEEE Journal of, 4(10), 587-593.
Dang, C., Reid, J., & Garside, B. (1980). Gain limitations in TE CO< inf> 2</inf> laser amplifiers. Quantum Electronics, IEEE Journal of, 16(10), 1097-1103.
DeMaria, A. J. (1973). Review of CW high-power CO< inf> 2</inf> lasers. Proceedings of the IEEE, 61(6), 731-748.
Franzen, D. L., & Jennings, D. A. (1972). Gain Saturation Measurements in CO, TEA Amplifiers. Journal of Applied Physics, 43, 729.
Haglund, R., Nowak, A., & Czuchlewski, S. (1981). Gaseous saturable absorbers for the helios CO< inf> 2</inf> laser system. Quantum Electronics, IEEE Journal of, 17(9), 1799-1808.
Heard, H. G., & Zipin, R. B. (1969). Laser Parameter Measurements Handbook. Physics Today, 22, 76.
Kildal, H., & Deutsch, T. (1976). Infrared third-harmonic generation in molecular gases. Quantum Electronics, IEEE Journal of, 12(7), 429-435.
Killinger, D., & Menyuk, N. (1981). Remote probing of the atmosphere using a CO< inf> 2</inf> DIAL system. Quantum Electronics, IEEE Journal of, 17(9), 1917-1929.
Kondoh, T., Hayashi, T., Kawano, Y., Kusama, Y., Sugie, T., Miura, Y., . . . Kawahara, Y. (2006). High-repetition CO 2 laser for collective Thomson scattering diagnostic of α particles in burning plasmas. Review of scientific instruments, 77(10), 10E505-510E505-503.
Nath, A., & Biswas, A. (1997). Optical gain and saturation intensity in a transverse-flow CW CO< sub> 2</sub> laser. Quantum Electronics, IEEE Journal of, 33(8), 1278-1281.
Sato, H., & Miura, Y. (1983). Line shape parameter analysis of individual vibrational-rotational transitions in a CO< inf> 2</inf> laser amplifier. Quantum Electronics, IEEE Journal of, 19(3), 410-416.
Singer, S. J. (1974). The molecular organization of membranes. Annual review of biochemistry, 43(1), 805-833.
Tulip, J. (1970). Gain saturation of the carbon dioxide laser. Quantum Electronics, IEEE Journal of, 6(4), 206-211.
Witteman, W. J. (1987). The CO2 laser. Paper presented at the Berlin and New York, Springer-Verlag (Springer Series in Optical Sciences. Volume 53), 1987, 320 p.

Downloads

Published

2012-12-31

How to Cite

Aram, M., Porhasannejad, Z., Aghayare, E., & Behrouzinia, S. (2012). Intra-Cavity Loss Element Method for Measurement of the Small Signal Gain of a TEA CO2 Laser: TEA CO2 Laser. International Journal of Fundamental Physical Sciences, 2(4), 58-60. https://doi.org/10.14331/ijfps.2012.330038

Issue

Section

ORIGINAL ARTICLES

Most read articles by the same author(s)