Calculation of The Deposited Energy and Stopping Range For The Proton, Deuteron and Carbon Beams In Laser Fusion by Fast Ignition

Laser

Authors

  • S.N. Hoseinimotlagh Department of Physics, College of Sciences, Islamic Azad University of Shiraz
  • M. Zareie Department of Physics, Science and Research Branch, Islamic Azad University, Fars, Iran

DOI:

https://doi.org/10.14331/ijfps.2014.330069

Keywords:

Carbon, Deuteron, Proton, Laser, Deposited

Abstract

The main goal of this paper is calculation of deposited energy and as a result evaluation of stopping range of the ionic beams of carbon, deuteron and proton. The deposited energy is the function of two parameters: (a) beam energy and (b) electron temperature. Also the stopping range depends on the temperature, ionic beam energy and density of fuel pellet. Our calculations show that with decreasing the stopping range of particle, the deposited energy is enhanced. In the same temperature and fuel density, carbon has less stopping range and more deposited energy but higher energy is needed to accelerate the beam , this causes carbon has less energy than others. However, deuteron has more stopping range and deposited energy in comparison with carbon also it has better beam gain in comparison with carbon. Stopping range and proton beam gain respect to the other fuels is placed in lower level , but the low threshold intensity to accelerate it, cause it obtain the high gain. The optimum beam gain of the proton is 150 while it is 75 for deuteron and 1 for carbon. The fuel geometry must be considered for more studies in order to increase the beam gain.

Downloads

Download data is not yet available.

References

Badziak, J. (2007). Laser-driven generation of fast particles. Opto-Electronics Review, 15(1), 1-12.

Berni, L., Del Bosco, E., Ferreira, J., Ludwig, G., Oliveira, R., Shibata, C., . . . Vilela, W. (2003). Overview and initial results of the ETE spherical tokamak.

Bychenkov, V. Y., Rozmus, W., Maksimchuk, A., Umstadter, D., & Capjack, C. (2001). Fast ignitor concept with light ions. Plasma Physics Reports, 27(12), 1017-1020.

Caruso, A., & Pais, V. (1996). The ignition of dense DT fuel by injected triggers. Nuclear fusion, 36(6), 745.

Fernández, J. C., Hegelich, B., Cobble, J. A., Flippo, K. A., Letzring, S. A., Johnson, R. P., . . . Wang, Y. (2005). Laser-ablation treatment of short-pulse laser targets: Toward an experimental program on energetic-ion interactions with dense plasmas. Laser and Particle Beams, 23(03), 267-273.

Hatchet S.P., B. C. G., Cowan T.E. et al, . (2000). Phys. Plasmas, 7, 2076-2082 (2000).

J.C. Fernandez et al. (2007). IFSA 2007 Proc., Kobe, Japan (2008), LA-UR-07-6236 (2007).

Logan, B. G., Bangerter, R. O., Callahan, D. A., Tabak, M., Roth, M., Perkins, L. J., & Caporaso, G. (2005). Assessment of Potential for Ion Driven Fast Ignition. Lawrence Berkeley National Laboratory.

Regan, C., Schlegel, T., Tikhonchuk, V., Honrubia, J., Feugeas, J., & Nicolai, P. (2011). Cone-guided fast ignition with ponderomotively accelerated carbon ions. Plasma Physics and Controlled Fusion, 53(4), 045014.

Regan, S. P., Marozas, J. A., Kelly, J. H., Boehly, T. R., Donaldson, W. R., Jaanimagi, P. A., . . . Seka, W. (2000). Experimental investigation of smoothing by spectral dispersion. JOSA B, 17(9), 1483-1489.

Robinson, A., Gibbon, P., Zepf, M., Kar, S., Evans, R., & Bellei, C. (2009). Relativistically correct hole-boring and ion acceleration by circularly polarized laser pulses. Plasma Physics and Controlled Fusion, 51(2), 024004.

Roth, M., Cowan, T., Key, M., Hatchett, S., Brown, C., Fountain, W., . . . Wilks, S. (2001). Fast ignition by intense laser-accelerated proton beams. Physical Review Letters, 86(3), 436.

Schlegel, T., Naumova, N., Tikhonchuk, V., Labaune, C., Sokolov, I., & Mourou, G. (2009). Relativistic laser piston model: Ponderomotive ion acceleration in dense plasmas using ultraintense laser pulses. Physics of Plasmas (1994-present), 16(8), 083103.

Snavely, R., Key, M., Hatchett, S., Cowan, T., Roth, M., Phillips, T., . . . Singh, M. (2000). Intense high-energy proton beams from petawatt-laser irradiation of solids. Physical Review Letters, 85(14), 2945.

Tabak, M., Clark, D., Hatchett, S., Key, M., Lasinski, B., Snavely, R., . . . Campbell, E. (2005). Review of progress in Fast Ignitiona). Physics of Plasmas (1994-present), 12(5), 057305.

Temporal, M., Honrubia, J., & Atzeni, S. (2002). Numerical study of fast ignition of ablatively imploded deuterium–tritium fusion capsules by ultra-intense proton beams. Physics of Plasmas (1994-present), 9(7), 3098-3107.

Trubnikov, B. (1963). Problems of plasma theory. Vol. I, M, 98.

Badziak, J. (2007). Laser-driven generation of fast particles. Opto-Electronics Review, 15(1), 1-12.

Berni, L., Del Bosco, E., Ferreira, J., Ludwig, G., Oliveira, R., Shibata, C., . . . Vilela, W. (2003). Overview and initial results of the ETE spherical tokamak.

Bychenkov, V. Y., Rozmus, W., Maksimchuk, A., Umstadter, D., & Capjack, C. (2001). Fast ignitor concept with light ions. Plasma Physics Reports, 27(12), 1017-1020.

Caruso, A., & Pais, V. (1996). The ignition of dense DT fuel by injected triggers. Nuclear fusion, 36(6), 745.

Fernández, J. C., Hegelich, B., Cobble, J. A., Flippo, K. A., Letzring, S. A., Johnson, R. P., . . . Wang, Y. (2005). Laser-ablation treatment of short-pulse laser targets: Toward an experimental program on energetic-ion interactions with dense plasmas. Laser and Particle Beams, 23(03), 267-273.

Hatchet S.P., B. C. G., Cowan T.E. et al, . (2000). Phys. Plasmas, 7, 2076-2082 (2000).

J.C. Fernandez et al. (2007). IFSA 2007 Proc., Kobe, Japan (2008), LA-UR-07-6236 (2007).

Logan, B. G., Bangerter, R. O., Callahan, D. A., Tabak, M., Roth, M., Perkins, L. J., & Caporaso, G. (2005). Assessment of Potential for Ion Driven Fast Ignition. Lawrence Berkeley National Laboratory.

Regan, C., Schlegel, T., Tikhonchuk, V., Honrubia, J., Feugeas, J., & Nicolai, P. (2011). Cone-guided fast ignition with ponderomotively accelerated carbon ions. Plasma Physics and Controlled Fusion, 53(4), 045014.

Regan, S. P., Marozas, J. A., Kelly, J. H., Boehly, T. R., Donaldson, W. R., Jaanimagi, P. A., . . . Seka, W. (2000). Experimental investigation of smoothing by spectral dispersion. JOSA B, 17(9), 1483-1489.

Robinson, A., Gibbon, P., Zepf, M., Kar, S., Evans, R., & Bellei, C. (2009). Relativistically correct hole-boring and ion acceleration by circularly polarized laser pulses. Plasma Physics and Controlled Fusion, 51(2), 024004.

Roth, M., Cowan, T., Key, M., Hatchett, S., Brown, C., Fountain, W., . . . Wilks, S. (2001). Fast ignition by intense laser-accelerated proton beams. Physical Review Letters, 86(3), 436.

Schlegel, T., Naumova, N., Tikhonchuk, V., Labaune, C., Sokolov, I., & Mourou, G. (2009). Relativistic laser piston model: Ponderomotive ion acceleration in dense plasmas using ultraintense laser pulses. Physics of Plasmas (1994-present), 16(8), 083103.

Snavely, R., Key, M., Hatchett, S., Cowan, T., Roth, M., Phillips, T., . . . Singh, M. (2000). Intense high-energy proton beams from petawatt-laser irradiation of solids. Physical Review Letters, 85(14), 2945.

Tabak, M., Clark, D., Hatchett, S., Key, M., Lasinski, B., Snavely, R., . . . Campbell, E. (2005). Review of progress in Fast Ignitiona). Physics of Plasmas (1994-present), 12(5), 057305.

Temporal, M., Honrubia, J., & Atzeni, S. (2002). Numerical study of fast ignition of ablatively imploded deuterium–tritium fusion capsules by ultra-intense proton beams. Physics of Plasmas (1994-present), 9(7), 3098-3107.

Trubnikov, B. (1963). Problems of plasma theory. Vol. I, M, 98.

Published

2014-09-30

Issue

Section

ORIGINAL ARTICLES