Measurement of the Magnetic Monopole Charge, the Missing Link in Quantum Mechanics, Aether and the Dark Energy

Relations between the Magnetic Monopole Neutrinos and Other Unsolved Mysteries of the Universe


  • Eue Jin Jeong Tachyonics Institute of Technology Austin TX 78741 USA ‎
  • Dennis Edmondson University of Washington Seattle, Seattle WA USA



measurement of magnetic monopole charge, nonlocality problem of quantum mechanics


Charge conservation in the theory of elementary particle physics is one of the best-established principles in physics. As such, if there are magnetic monopoles in the universe, magnetic charge will most likely be a conserved quantity like electric charges. If neutrinos are magnetic monopoles, as physicists have reported the possibility, the Earth should show signs of having magnetic monopole charge on a macroscopic scale since neutrons must also have magnetic monopole charge if general charge conservation principle is valid. To test this hypothesis, experiments were performed to detect the collective effect of magnetic monopole charge of neutrons on the earth's equator using two balanced high strength neodymium rod magnets. We were able to identify non-zero magnetic monopole charge of the individual neutrons from the experiments. The presence of individual magnetic monopole charges in the universe prompted proposition of the new symmetric form of Maxwell's equations. Based on the theoretical investigation of the new Maxwell's equations, we conclude that magnetic monopole neutrinos are the cause of the origin of quantum mechanical uncertainty, dark energy and the medium for electromagnetic wave propagation in space.


Download data is not yet available.

Author Biographies

Eue Jin Jeong, Tachyonics Institute of Technology Austin TX 78741 USA ‎

Eue Jin Jeong

Dennis Edmondson, University of Washington Seattle, Seattle WA USA

Dennis Edmondson


Bialynicki-Birula, I., & Bialynicka-Birula, Z. J. P. R. D. ‎‎(1971). Magnetic monopoles in the hydrodynamic ‎formulation of quantum mechanics. 3(10), 2410. ‎

Bilaniuk, O.-M., & Sudarshan, E. G. J. P. T. (1969). Particles ‎beyond the light barrier. 22(5), 43-51. ‎Bilaniuk, O., Deshpande, V., & Sudarshan, E. G. J. A. J. o. P. ‎‎(1962). “Meta” relativity. 30(10), 718-723. ‎

Chodos, A., Hauser, A. I., & Kostelecký, V. A. (1985). The ‎neutrino as a tachyon. ‎

Dirac, P. A. M. (1931). Quantised singularities in the ‎electromagnetic field. Proceedings of the Royal Society of ‎London. Series A, Containing Papers of a Mathematical ‎Physical Character, 133(821), 60-72. ‎

Einstein, A., Podolsky, B., & Rosen, N. J. P. r. (1935). Can ‎quantum-mechanical description of physical reality be ‎considered complete? , 47(10), 777. ‎

Finlay, C. C., Maus, S., Beggan, C., Bondar, T., Chambodut, ‎A., Chernova, T., . . . Hamoudi, M. J. G. J. I. (2010). ‎International geomagnetic reference field: the eleventh ‎generation. 183(3), 1216-1230. ‎

Frampton, P. H., Glashow, S. L., & Van Dam, H. (2012). ‎Third Workshop on Grand Unification: University of ‎North Carolina, Chapel Hill April 15–17, 1982 (Vol. 6): ‎Springer Science & Business Media.‎

Greene, B. R., Morrison, D. R., & Polchinski, J. J. P. o. t. N. A. ‎o. S. (1998). String theory. 95(19), 11039-11040. ‎

Jackiw, R. (2002). Dirac's magnetic monopoles (again). arXiv ‎preprint hep-th/0212058. ‎

Lineweaver, C. H., & Davis, T. M. J. S. A. (2005). ‎Misconceptions about the big bang. 292(3), 36-45. ‎

Loureiro, A., Cuceu, A., Abdalla, F. B., Moraes, B., ‎Whiteway, L., McLeod, M., . . . Manera, M. J. P. R. L. ‎‎(2019). Upper bound of neutrino masses from combined ‎cosmological observations and particle physics ‎experiments. 123(8), 081301. ‎

Magnetic Fields and Forces Archived from the original on ‎‎2012-02-20. Retrieved 2009-12-24. (2009). ‎

Pati, J. C., & Salam, A. (1994). Lepton number as the fourth ‎‎“color”. In Selected Papers Of Abdus Salam: (With ‎Commentary) (pp. 343-357): World Scientific.‎

Polyakov, A. M. (1974). Spectrum of particles in quantum ‎field theory. J JETP Lett, 20, 430-433. ‎

Recami, E. (1978). Tachyons, monopoles, and related topics. ‎

Robertson, R., Bowles, T., Stephenson Jr, G., Wark, D., ‎Wilkerson, J. F., & Knapp, D. J. P. r. l. (1991). Limit on ν e ‎mass from observation of the β decay of molecular tritium. ‎‎67(8), 957. ‎

Science, I. C. J. (2013). Evidence for high-energy ‎extraterrestrial neutrinos at the IceCube detector. ‎‎342(6161), 1242856. ‎

Steyaert, J. (1988). The Neutrino as a Tachyonic Non-‎charged Light Magnetic Monopole? In Neutrino Physics ‎‎(pp. 159-162): Springer.‎

t Hooft, G. J. N. P. B. (1974). Magnetic monopoles in unified ‎theories. Nucl. Phys. B, 79(CERN-TH-1876), 276-284. ‎

Trefil, J., Kelly, H., & Rood, R. J. N. (1983). Magnetic ‎monopoles and the solar neutrino problem. 302(5904), ‎‎111-113. ‎

Uggla, C. (2006). Spacetime singularities. Einstein Online, ‎‎2(2006), 1002. ‎

University of Waikato (Producer). Retrieved from ‎



How to Cite

Jeong, E. J. ., & Edmondson, D. . (2022). Measurement of the Magnetic Monopole Charge, the Missing Link in Quantum Mechanics, Aether and the Dark Energy: Relations between the Magnetic Monopole Neutrinos and Other Unsolved Mysteries of the Universe. International Journal of Fundamental Physical Sciences, 12(2), 19-28.