QCD QED Potentials, Quark Confinement

Theoretical Generalization of Yukawa Potential

Authors

  • Eue Jin Jeong Tachyonics Institute of Technology Austin TX 78741 USA

DOI:

https://doi.org/10.14331/ijfps.2022.330153

Keywords:

Quantum chromodynamics (QCD) ‎, Quantum electrodynamics (QED) ‎, Potential quantum field ‎, Quarks‎

Abstract

One of the enduring puzzles in high energy particle physics is why quarks do not exist independently ‎despite their existence inside the hadron as quarks have never been found in isolation. This problem may ‎be solved by formulating a QCD potential for the entire range of interaction distances of the quarks. The ‎mystery could be related to the fundamental origin of the mass of elementary particles despite the success ‎of the quantum field theories to the highest level of accuracy. The renormalization program is an essential ‎part of the calculation of the scattering amplitudes, where the infinities of the calculated masses of the ‎elementary particles are subtracted for the progressive calculation of the higher-order perturbative terms. ‎The mathematical structure of the mass term from quantum field theories expressed in the form of infinities ‎suggests that there may exist a finite dynamical mass in the limit when the input mass parameter ‎approaches zero. The Lagrangian recovers symmetry at the same time as the input mass becomes zero, ‎whereas the self-energy diagrams acquire a finite dynamical mass in the 4-dimensional space when the ‎dimensional regularization method of renormalization is utilized. We report a new finding that using the ‎mathematical expression of the self-energy(mass) for photons and gluons calculated from this method, the ‎complex form of the QCD and QED interaction potentials can be obtained by replacing the fixed ‎interaction mediating particle’s mass and coupling constants in Yukawa potential with the scale-‎dependent running coupling constant and the corresponding dynamical mass. The derived QCD QED ‎potentials predict the behavior of the related elementary particles exactly as verified by experimental ‎observation.‎

Downloads

Download data is not yet available.

Author Biography

Eue Jin Jeong, Tachyonics Institute of Technology Austin TX 78741 USA

Eue Jin Jeong

References

‎'t Hooft, G. (1993). A planar diagram theory for strong ‎interactions. In The Large N Expansion In Quantum Field ‎Theory And Statistical Physics: From Spin Systems to 2-‎Dimensional Gravity (pp. 80-92): World Scientific.‎

Arnison, G., Albrow, M., Allkofer, O., Astbury, A., Aubert, B., ‎Bacci, C., Bezaguet, A. J. P. L. B. (1986). Recent results ‎on intermediate vector boson properties at the CERN ‎super proton synchrotron collider. 166(4), 484-490. ‎

Coleman, S. (2022). Sidney Coleman's Lectures on ‎Relativity: Cambridge University Press.‎

D Liko, I. M., M Pernicka, B Rahbaran. (2012). Search for ‎heavy, top-like quark pair production in the dilepton final ‎state in pp collisions. Physics Letters B, 716(1), 17. ‎

Gell-Mann, M., Goldberger, M., & Thirring, W. J. P. R. (1954). ‎GELL-MANN 1954. 95, 1612. ‎

Glashow, S. J. N. P. (1961). GLASHOW 1961. 22, 579. ‎

Gross, D., Wilczek, F., Weinberg, S., Gell-Mann, M., Low, F., ‎Callan, C., Nambu, Y. J. P. R. L. (1973). GROSS 1973. ‎‎30, 1343. ‎

Salam, A., & Ward, J. J. P. R. L. (1967). Phys. Letters 13 ‎‎(1964) 168; S. Weinberg. 19(1264), 27. ‎

Salam, A. J. N. S. (1968). Elementary particle theory, ed. 367. ‎

Stückelberg, E., & Petermann, A. J. H. P. A. (1953). ‎STÜCKELBERG 1953. 26, 499. ‎

Symanzik, K. J. C. i. m. p. (1971). Small-distance-behaviour ‎analysis and Wilson expansions. 23(1), 49-86. ‎

UA-2 Collab., G. B. e. a. (1983). Phys. Lett‎, 122B, 476. ‎

Veltman, M. J. N. P. B. (1972). Regularization and ‎renormalization of gauge fields. 44(1), 189-213. ‎

Weinberg, S. J. P. L. B. (1980). Effective gauge theories. ‎‎91(1), 51-55. ‎

Weinberg, S. J. P. r. l. (1967). A model of leptons. 19(21), ‎‎1264. ‎

Wilson, K. G., & Kogut, J. J. P. r. (1974). The renormalization ‎group and the ϵ expansion. 12(2), 75-199. ‎

Wilson, K. G. J. R. o. m. p. (1975). The renormalization ‎group: Critical phenomena and the Kondo problem. ‎‎47(4), 773. ‎

Published

2022-09-18

Issue

Section

ORIGINAL ARTICLES