On Maxwell’s Reversed Laws as Root of Magnetic Monopoles in Dark Matter

Dark Matter


  • Russell Bagdoo Independent researcher, Canada ‎




Dark matter, Magnetic monopole, Inverted Maxwell’s equations ‎


We propose the magnetic sterile neutrino as a possible candidate for dark matter. We bring the idea that dark matter would be made up of substances originating from black holes, in particular sterile neutrinos associated with a magnetic charge. These would not be sensitive only to the gravitational force. First, we conjectured that when baryonic matter crosses the black holes event horizon, Maxwell's laws are reversed, the electric charge turns into a magnetic charge. Sterile magnetic neutrinos and antineutrinos would be created and emitted, true magnetic monopoles. Second, we discuss dark matter consisting of sterile magnetic neutrinos, the cosmic microwave background, mini primordial black holes, and the formation of intermediate mass black holes linked to the formation of galaxies. Third, we review different mechanisms of how sterile magnetic neutrino could have escaped from the black hole. Fourth, we investigate the possibility that ordinary neutrinos could be produced by the weak interaction if sterile magnetic dark matter neutrinos interact with active ordinary matter neutrinos. Fifth, after examining equations of possible production of gamma rays from the annihilation of neutrinos-antineutrinos, we propose the “anapole”, which would be weakly sensitive to electromagnetic forces. Before concluding, we underline the relation between the distribution of the magnetic fields coming from baryonic matter and that from dark matter, and we highlight the gamma ray glows in the dark that can be attributed to the annihilation of dark matter with itself.


Download data is not yet available.

Author Biography

Russell Bagdoo, Independent researcher, Canada ‎

Russell Bagdoo  

Independent researcher, Canada


‎[1] Dobrescu, B., Lincoln, D. (2017) Pour la science, Hors-‎série no 97, p. 26. ‎

‎[2] NASA (2015) WMAP Produces New Results

‎[3] Bahcall, N.A., Fan, X. (1998) A lightweight universe? ‎Proc Natl Acad Sci USA 95(11), p. 5956–5959.‎

‎[4] Roberts, M.S., Rots, A. H. (1973) Comparison of ‎Rotation Curves of Different Galaxy Types, ‎Astronomy and Astrophysics, Vol. 26, p. 483-485.‎

‎[5] Bagdoo, R. (2022) Galaxy Rotation Curves Traced ‎Out by the Theory of Relation,European Journal of ‎Applied Sciences, Vol. 10, No. 2. ‎DOI:10.14738/aivp.102.11906‎

‎[6] Zwicky, Fritz (1929) PNAS, 15, 773-779. ‎https://doi.org/10.1073/pnas.15.10.773‎

‎[7] Bosma, A. (1998) The Dark Matter problem. ‎arXiv:astro-ph/9812015v1 DOI: ‎‎10.1023/A:1008366614769‎

‎[8] Rubin, Vera C., Ford, W. Kent Jr. (1970) Rotation of ‎the Andromeda Nebula from a Spectroscopic ‎Survey of Emission Regions, Astrophysical Journal, ‎vol. 159, 379-403 DOI: 10.1086/15031‎

‎[9] Rubin, Vera C., Ford, W. Kent Jr., Thonnard, ‎Norbert (1978) Extended rotation curves of high- ‎luminosity spiral galaxies. IV. Systematic dynamical ‎properties, Sa through Sc, The Astrophysical ‎Journal, 225:L107-L111.‎

‎[10] Rubin, Vera C., Ford, W. Kent Jr., Thonnard, ‎Norbert (1980) Rotational properties of 21 SC ‎galaxies with a large range of luminosities and ‎radii, from NGC 4605 (R=4kpc) to UGC 2885 ‎‎(R=122kpc), The Astrophysical Journal, 238:471–‎‎487.‎

‎[11] Ikonicoff, R. and Rey, B. (2019) L’Univers caché, ‎Science & Vie. No. 1224, 60-81.‎

‎[12] White S.D.M., Navarro J.F., Evrard A.E., Frenk C.S. ‎‎(1993) The baryon content of galaxy clusters: a ‎challenge to cosmological orthodoxy, Nature, 366, ‎p. 429–433.‎

‎[13] Riazuelo, A. (2011) Pour la Science, Dossier, No. ‎‎71, 66. ‎

‎[14] Bahcall, N.A. (2015) Dark matter universe, PNAS, ‎‎112 (40) 12243-12245. ‎https://doi.org/10.1073/pnas.1516944112‎

‎[15] Peskin, M.E. (2015) Supersymmetric dark matter ‎in the harsh light of the Large Hadron Collider, ‎PNAS, 112:12256–12263.‎

‎[16] Hooper, D. (2006) Dark Cosmos in Search of our ‎Universe Missing Mass and Energy, Smithsonian ‎Books, 75-79, 95-99.‎

‎[17] Martin, S.P. (2016) A Supersymmetry Primer, 95-‎‎114, 144. arXiv:hep-ph/9709356v7 doi: ‎‎10.1142/9789812839657_0001‎

‎[18] Funk S. (2015) Indirect detection of dark matter ‎with γ rays, PNAS, 112, 12264–12271.‎

‎[19] Rosenberg, L.J. (2015) Dark matter QCD-axion ‎searches, Proceedings of the National Academy of ‎Sciences USA, 112, 12278–12.‎

‎[20] Tracy, M. (2021) MicroBooNE experiment’s first ‎results show no hint of a sterile neutrino, Fermilab, ‎media@fnal.gov, 224-290-7803.‎

‎[21] Bagdoo, R. (2020) What Connects Dark Matter ‎and Black Holes? Journal of Modern Physics, 11, ‎‎168-195. https://doi.org/10.4236/jmp.2020.112011‎

‎[22] Panek, R (2011) The 4% Universe, First Mariner ‎Books, 192, 193.‎

‎[23] Chui, Glennda (2021) Is dark matter cold, warm or ‎hot?, Symmetry. ‎https://www.symmetrymagazine.org/article/is-‎dark-matter-cold-warm-or-hot

‎[24] Ratner, P. (2018) Why the number 137 is one of ‎the greatest mysteries in physics, Hard Science. ‎https://bigthink.com/hard-science/number-137-‎physics/‎

‎[25] Feynman, R. (1985) QED the Strange Theory of ‎Light and Matter, Princeton University Press, ‎Chapter 4, 129.‎

‎[26] Dirac, P.A.M. (1931) Quantised Singularities in the ‎Electromagnetic Field. Proceedings of the Royal ‎Society of London. Series A 133, 60, p. 9.‎

‎[27] Ronen, Y., Cohen, Y., Kang, J.-H., Haim, A., Rieder, ‎M.-T., Heiblum, M., Mahalu, D., Shtrikman H. ‎‎(2016) Charge of a quasiparticle in a ‎superconductor, PNAS, 113 (7) 1743-1748. ‎https://doi.org/10.1073/pnas.1515173113‎

‎[28] Siegel, E. (2014) Nature is not ‎symmetric.https://medium.com/starts-with-a-‎bang/nature-is-not-symmetric-‎

‎[29] Adair, R.K. (1987) The Great Design. Oxford University ‎Press, New York, 134, 247 Note 2. ‎

‎[30] Maxwell's equations, Wikipedia. ‎https://en.wikipedia.org/wiki/Maxwell’s equations ‎

‎[31] Serway, R.A., Beichner, R.J. (2000) Physics, Vol 2, ‎‎1076-1079.‎

‎[32] Benson, H. (1991) University Physics, John Wiley & ‎Sons, Inc., 330, 681, 682, 691. ‎

‎[33] Dark photon, Wikipedia. ‎https://en.wikipedia.org/wiki/Dark_photon

‎[34] Alonso-Álvarez, G., Ertas, F., Jaeckel, J., ‎Kahlhoefer, F., Thormaehlen, L. J. (2020) Hidden ‎Photon Dark Matter in the Light of XENON1T and ‎Stellar Cooling. arXiv:2006.11243v3 [hep-ph]‎

‎[35] Fabbrichesi, M., Gabrielli, E., Lanfranchi, G. (2020) ‎The Dark Photon, SpringerBriefs in Physics. ‎DOI:10.1007/978-3-030-62519-1 arXiv:2005.01515v3 ‎‎[hep-ph]‎

‎[36] Essig, R., et al. (2013) Dark Sectors and New, Light, ‎Weakly-Coupled Particles.arXiv:1311.0029v1 [hep-‎ph]‎

‎[37] Rajantie, A. (2016) The search for magnetic ‎monopoles, Physics Today 69, 10, 40; doi: ‎‎10.1063/PT.3.3328 ‎https://doi.org/10.1063/PT.3.3328‎

‎[38] Why Magnetic Monopoles SHOULD Exist (2021) ‎YouTube. ‎https://www.youtube.com/watch?v=dw1sekg6SUY

‎[39] 't Hooft, G. (1974) Magnetic Monopoles in Unified ‎Gauge Theories, Nucl.Phys.B 79, 276-284. • DOI: ‎‎10.1016/0550-3213(74)90486-6‎

‎[40] Manton, N.S. (1977) The Force Between 't Hooft-‎Polyakov Monopoles, Nucl.Phys.B 126, 525-541. ‎DOI: 10.1016/0550-3213(77)90294-2‎

‎[41] Cameron, R.P., Barnett, S.M. (2012) Electric–‎magnetic symmetry and Noether's theorem, New ‎Journal of Physics, Vol. 14, 123019.‎

‎[42] Agullo, I., et al. (2017) Electromagnetic Duality ‎Anomaly in Curved Spacetimes, Physical Review ‎Letters. DOI: 10.1103/PhysRevLett.118.111301‎

‎[43] Cownden, B., Frey, A.R. (2018) Variations on the ‎Dirac string, Phys. Rev. D 98, 105013. ‎DOI:10.1103/PhysRevD.98.105013. ‎arXiv:1807.07401v2 [hep-th]‎

‎[44] Danger Julius, T'., (2016) The mysterious missing ‎magnetic monopole, The Conversation. ‎https://phys.org/news/2016-08-mysterious-‎magnetic-monopole.html

‎[45] Rajantie, A. (2012) Magnetic monopoles in field ‎theory and cosmology, Philosophical Transactions ‎of the Royal Society A, 370, 5705–5717. ‎doi:10.1098/rsta.2011.0394‎

‎[46] MIT News (2022) A new upper limit on the mass of ‎neutrinos. https://news.mit.edu/2021/new-upper-limit-‎mass-neutrinos-0214‎

‎[47] Rini, M. (2022) Maximum Neutrino Mass Drops Again, ‎Physics, Feb. 14, 15, 25. ‎https://physics.aps.org/articles/v15/25‎

‎[48] de Salas, P.F., Gariazzo, S., Mena, O., Ternes, C.A., ‎Tortola, M. (2018) Neutrino Mass Ordering from ‎Oscillations and Beyond: 2018 Status and Future ‎Prospects, Frontiers in Astronomy and Space Sciences. ‎Doi.org/10.3389/fspas.2018.00036‎

‎[49] Drewes, M. (2013) The Phenomenology of Right Handed ‎Neutrinos, International Journal of Modern Physics E, 22, ‎‎1330019. DOI: 10.1142/S0218301313300191. ‎arXiv:1303.6912v3 [hep-ph]‎

‎[50] Luminet, J.-P. (1987) Trous Noirs, ‎Belfond/sciences, p. 224-226, 244.‎

‎[51] Wikipedia, Sterile neutrino. ‎https://en.wikipedia.org/wiki/Sterile_neutrino

‎[52] Wikipedia, Cosmic microwave background. ‎https://en.wikipedia.org/wiki/Cosmic_microwave_‎background#cite_note-35‎

‎[53] Harrison, E. R. (1970). Fluctuations at the ‎threshold of classical cosmology. Physical Review ‎D. 1 (10): 2726–2730. doi:10.1103/PhysRevD.1.2726‎

‎[54] Hinshaw, G., et al. (2007) Three-year Wilkinson ‎Microwave Anisotropy Probe (WMAP) ‎observations: temperature analysis, Astrophysical ‎Journal Supplement Series. 170 (2): 288–334. ‎arXiv:astro-ph/0603451. doi:10.1086/513698. S2CID ‎‎15554608.‎

‎[55] Planck Collaboration Team (2016). Planck ‎intermediate results. XXX. The angular power ‎spectrum of polarized dust emission at ‎intermediate and high Galactic latitudes. ‎Astronomy & Astrophysics. 586 (133): A133. ‎arXiv:1409.5738. doi:10.1051/0004-6361/201425034. ‎S2CID 9857299.‎

‎[56] Famaey, B. (2020) La matière noire, Pour la ‎Science, Hors-Série, No 106, 3, 46-49. ‎

‎[57] Stellar Black Hole, Cosmos. ‎https://astronomy.swin.edu.au/cosmos/s/Stellar+‎Black+Hole

‎[58] Supermassive Black Hole, Cosmos. ‎https://astronomy.swin.edu.au/cosmos/s/supermassive+black+hole

‎[59] Fontez, M. Ikonicoff, R. Grousson, M. Rey, B. ‎‎(2018) Science & Vie. No. 1204, 40-56.‎

‎[60] Klesman, A. (2019) What are primordial black ‎holes? ‎https://astronomy.com/news/2019/07/primordial-‎black-holes

‎[61] Park, J. (2019) What are intermediate-mass black ‎holes? ‎https://astronomy.com/news/2019/07/what-are-‎intermediate-mass-black-holes

‎[62] Reionization, Wikipedia. ‎https://en.wikipedia.org/wiki/Reionization

‎[63] Planck Collaboration, Ade, P.A.R., et al. (2014) ‎Planck 2013 results. XIII. Galactic CO emission, ‎Astronomy & Astrophysics, Volume 571, A1. ‎https://doi.org/10.1051/0004-6361/201321529. ‎arXiv:1303.5073v2 [astro-ph.GA] ‎

‎[64] Benmakhlouf, M. (2021) Inédit : de la lumière ‎détectée derrière un trou Noir, National ‎Geographic. ‎https://www.nationalgeographic.fr/espace/inedit-‎de-la-lumiere-detectee-derriere-un-trou-noir

‎[65] Habib, S. (1997) Dark Matter and Massive ‎Neutrinos, Los Alamos Science No 25. ‎https://sgp.fas.org/othergov/doe/lanl/pubs/00326‎‎616.pdf

‎[66] Lachièze-Rey, M. (1986) Chaos et Cosmos, Le ‎Mail, 62-68.‎

‎[67] Zeldovich, Y., Wikipedia. ‎https://en.wikipedia.org/wiki/Yakov_Zeldovich

‎[68] Zel’dovich, Y.B., Novikov, I.D. (1971) Stars and ‎Relativity, Dover Pub., Inc., p. 70, 144-151.‎

‎[69] Hawking, S. (1988) A Brief History of Time, Bantam ‎Books. 99-113.‎

‎[70] Hawking, S. (1971) Gravitationally collapsed objects of ‎very low mass, Monthly Notices of the Royal Astronomical ‎Society, Volume 152, Issue 1, p. 75–78. ‎doi:10.1093/mnras/152.1.75.‎

‎[71] Barrau, A., Gorecki, A. (2011) Pour la Science, Dossier, ‎No. 71, 30-36.‎

‎[72] A New Kind of Black Hole. NASA's Goddard Space ‎Flight Center ‎https://www.nasa.gov/vision/universe/starsgalaxies/Black_Hole.html

‎[73] O'Callaghan, J. (2019) How did supermassive black ‎holes grow so fast?, Horizon ‎https://ec.europa.eu/research-and-‎innovation/en/horizon-magazine/how-did-‎supermassive-black-holes-grow-so-fast

‎[74] Bertone, G. (2013) Le mystère de la matière noire, ‎Dunod, 100-102, 148-9, 160-163.‎

‎[75] Muezca, M. (2020) Ciel & Espace, No 570, 53-56. ‎

‎[76] Bellido, J.G., Clesse, S. (2020) La piste des trous ‎noirs, Pour la Science, Hors-Série, No 106, 64-71.‎

‎[77] Guo, Q., et al. (2019) Further evidence for a ‎population of dark-matter-deficient dwarf ‎galaxies, Nature Astronomy. DOI: 10.1038/s41550-‎‎019-0930-9‎

‎[78] Hawking radiation, Wikipedia. ‎https://www.cs.mcgill.ca/~rwest/wikispeedia/wpcd/wp/h/Hawking_radiation.htm

‎[79] Fore, M. (2019) Stephen Hawking Was Right: ‎Black Holes Can Evaporate, Weird New Study ‎Shows, Livescience. ‎https://www.livescience.com/65683-sonic-black-‎hole-spews-hawking-radiation.html

‎[80] Begelman, M., Rees, M. (1998) Gravity’s fatal ‎attraction, Scientific American Library, 223-225. ‎

‎[81] Rovelli, C. (2020) Where does the stuff that falls into a ‎black hole go? NewScientist, Space, 28 October. ‎https://www.newscientist.com/article/mg24833060-500-‎carlo-rovelli-where-does-the-stuff-that-falls-into-a-black-‎hole-go/‎

‎[82] Wald, M. R. (1992) Space, Time, and Gravity, The ‎University of Chicago Press, 86-89, 127, 130-139.‎

‎[83] Black-body radiation, Wikipedia. ‎https://en.wikipedia.org/wiki/Black-ody_radiation

‎[84] Bennett, C. L. (2013) Nine-Year Wilkinson ‎Microwave Anisotropy Probe (WMAP) ‎Observations: Final Maps and Results. ‎arXiv:1212.5225v3 [astro-ph.CO] ‎https://doi.org/10.1088/0067-0049/208/2/20‎

‎[85] Weinberg, S. (1977) The First Three Minutes, Basic ‎Books, 62. ‎

‎[86] Bagdoo, R. (2019) The Equation of the Universe ‎‎(According to the Theory of Relation). Journal of ‎Modern Physics, 10, 310-343. ‎https://doi.org/10.4236/jmp.2019.103022‎

‎[87] Hawking, S.W. (1975) Particle creation by black ‎holes, Communications in Mathematical Physics ‎vol. 43, p. 199–220.‎

‎[88] Wikipedia, Hawking radiation. ‎https://en.wikipedia.org/wiki/Hawking_radiation#:‎

‎[89] Wikipedia, Schwarzschild radius. ‎en.wikipedia.org/wiki/Schwarzschild_radius

‎[90] Nimtz, G. (2011) Tunneling Violates Special ‎Relativity, Foundations of Physics, 41, 1193-1199. ‎arXiv:1003.3944v1. https://doi.org/10.1007/s10701-‎‎011-9539-2‎

‎[91] Davies, P. C. W. (2005). Quantum tunneling time, ‎American Journal of Physics, 73 (1): 23–27. ‎arXiv:quant-ph/0403010. doi:10.1119/1.1810153. ‎S2CID 119099861.‎

‎[92] Islam, J. N. (1983) Le destin ultime de l’univers, ‎Cambridge University Press 104, 109, 113-117.‎

‎[93] Verma, R., Kashav, M., Verma, S., Chauhan, B. C. ‎‎(2021) Scalar Dark Matter in A4 based texture one-‎zero neutrino mass model within Inverse Seesaw ‎Mechanism.https://doi.org/10.48550/arXiv.2102.03‎‎074‎

‎[94] Boyarsky, A., Drewes, M., Lasserre, T., Mertens, ‎S., Ruchayskiy, O. (2018) Sterile Neutrino Dark ‎Matter, p. 14, 31, 40. 42. arXiv:1807.07938v2 ‎https://doi.org/10.1016/j.ppnp.2018.07.004‎

‎[95] Dodelson, S., Widrow, L. M. (1994) Sterile ‎Neutrinos as Dark Matter, Phys.Rev.Lett.72:17-20. ‎https://doi.org/10.1103/PhysRevLett.72.17 ‎arXiv:hep-ph/9303287v1‎

‎[96] Reeves, Hubert (1988) Patience dans l’azur, ‎Éditions du Seuil, Points, p. 275. ‎

‎[97] Wikipedia, Seesaw mechanism. ‎https://en.wikipedia.org/wiki/Seesaw_mechanism

‎[98] Peter, P., Uzan, J.-P. (2009) Primordial Cosmology, ‎Oxford University Press, p. 432. ‎

‎[99] P. Langacker (1989) University of Pennsylvania ‎Report No. UPR 0401T. ‎https://web.sas.upenn.edu/pgl/selected-‎publications/‎

‎[100] Dolgov, A. (1981) Neutrinos in the Early Universe, ‎Soviet Journal of Nuclear Physics, 33, p. 700.‎

‎[101] Manohar, A. (1987) Statistical Mechanics of ‎Noninteracting Particles, Physics Letters B 186, 370. ‎DOI: 10.1016/0370-2693(87)90310-8‎

‎[102] Barbieri, R., Dolgov, A. (1990) Bounds on sterile ‎neutrinos from nucleosynthesis, Physics Letters B, ‎Vol. 237, Issues 3–4, p. 440-445.‎

‎[103] Enqvist, K., Kainulainen, K., Maalampi, J. (1992) ‎Stringent cosmological bounds on inert neutrino ‎mixing, Nuclear Physics B, Vol. 373, Issue 2, p. 498-‎‎528.‎

‎[104] Cline, J.M. (1992) Constraints on almost-Dirac ‎neutrinos from neutrino-antineutrino oscillations, ‎Physical Review Letters, 68, p. 3137.‎

‎[105] Aad, G. et al. (2012) Observation of a new ‎particle in the search for the Standard Model Higgs ‎boson with the ATLAS detector at the LHC, ATLAS ‎Collaboration, Phys.Lett.B, 716, 1-29. ‎https://doi.org/10.1016/j.physletb.2012.08.020 ‎‎[arXiv:1207.7214].‎

‎[106] Chatrchyan, S. et al. (2012) Observation of a new ‎boson at a mass of 125 GeV with the CMS ‎experiment at the LHC, The CMS Collaboration, ‎Phys. Lett. B 716, 30. ‎https://doi.org/10.1016/j.physletb.2012.08.021 ‎‎[arXiv:1207.7235 v2].‎

‎[107] nLab, Yukawa coupling. ‎https://ncatlab.org/nlab/show/Yukawa+coupling

‎[108] Barenboim, G., Park, W.-I. (2017) Lepton number ‎asymmetries and the lower bound on the reheating ‎temperature, Journal of Cosmology and ‎Astroparticle Physics. arXiv:1708.04899, ‎doi:10.1088/1475-7516/2017/12/037. ‎

‎[109] Asaka, T., Laine, M., Shaposhnikov, M. (2007) ‎Lightest sterile neutrino abundance within the ‎nuMSM, Journal of High Energy ‎Physics.Doi:10.1088/1126-6708/2007/01/091.‎

‎[110] Lello, L., Boyanovsky, D. (2016) The case for ‎mixed dark matter from sterile neutrinos, Journal ‎of Cosmology and Astroparticle Physics. ‎arXiv:1508.04077v2 doi:10.1088/1475-‎‎7516/2016/06/011.‎

‎[111] Lello, L,. Boyanovsky, D. (2015) Cosmological ‎Implications of Light Sterile Neutrinos produced ‎after the QCD Phase Transition, Physical. Review D. ‎arXiv:1411.2690v2, ‎doi:10.1103/PhysRevD.91.063502.‎

‎[112] Bezrukov, F., Gorbunov, D., Shaposhnikov, M. ‎‎(2009) On initial conditions for the HotBig Bang, ‎Journal of Cosmology and Astroparticle Physics. ‎arXiv:0812.3622, doi:10.1088/1475-7516/2009/06/ ‎‎029.‎

‎[113] Lello, L,. Boyanovsky, D., Pisarski, R. D. (2017) ‎Production of heavy sterile neutrinos from vector ‎boson decay at electroweak temperatures, Phys. ‎Rev. D. arXiv:1609.07647, ‎doi:10.1103/PhysRevD.95.043524.‎

‎[114] Wikipedia, Gauge theory. ‎https://en.wikipedia.org/wiki/Gauge_theory

‎[115] Miroshnichenko, A.E., et al. (2014) Seeing the ‎unseen: observation of an anapole with dielectric ‎nanoparticles nanoparticles. ‎https://doi.org/10.48550/arXiv.1412.0299‎

‎[116] Gamboa, J., Mendez, F., Tapia, N. Anapole Dark ‎Matter Quantum Mechanics (2019). ‎arXiv:1909.04073v3. ‎https://doi.org/10.1103/PhysRevD.101.015013‎

‎[117] Stecker, F.W. (1971) Cosmic Gamma Rays, ‎NASA, 3, 41, 47, 77-81.‎

‎[118] Zel’Dovich, Y. B. (1958) Electromagnetic ‎Interaction with Parity Violation, Soviet Phys. JETP, ‎Vol: 6, 1184.‎

‎[119] Wood, C. S., et al. (1997) Measurement of Parity ‎Nonconservation and an Anapole Moment in ‎Cesium, Science, 275, 1759-63. Doi: ‎‎10.1126/science.275.5307.1759.‎

‎[120] Fitzpatrick, A. L., Zurek, K. M. (2010) Dark ‎Moments and the DAMA-CoGeNT Puzzle, Physical ‎Review D, Vol. 82, Iss. 7, 075004. arXiv:1007.5325‎

‎[121] Frandsen, M. T., et al. (2013) The unbearable ‎lightness of being: CDMS versus XENON, Journal of ‎Cosmology and Astroparticle Physics. ‎doi.org/10.1088/1475-7516/2013/07/023. ‎arXiv.1304.6066‎

‎[122] Wikipedia, Toroidal moment. ‎https://en.wikipedia.org/wiki/Toroidal_moment

‎[123] Ho, C. M., Scherrer, R. J. (2013) Anapole Dark ‎Matter, Physics Letters B, 722, 341. ‎arXiv:1211.0503v3. ‎doi.org/10.1016/j.physletb.2013.04.039‎

‎[124] Vanderbilt University Research News (2013) ‎New, simple theory may explain mysterious dark ‎matter. ‎https://news.vanderbilt.edu/2013/06/10/dark-‎matter/‎

‎[125] Heo, J. H. (2010) Minimal Dirac Fermionic Dark ‎Matter with Nonzero Magnetic Dipole Moment, ‎Physics Letters B 693, 255-258, arXiv:0901.3815v2. ‎https://doi.org/10.1016/j.physletb.2010.08.035‎

‎[126] Del Nobile, E., et al. (2014) Direct detection of ‎Light Anapole and Magnetic Dipole DM, ‎https://doi.org/10.48550/arXiv.1401.4508https://doi.org/10.1088/1475-7516/2014/06/002‎

‎[127] Gao, Y., Ho, C., Scherrer, R.J. (2014) Anapole ‎dark Matter at the LHC, Physical Review D 89, ‎‎045006. doi.org/10.1103/PhysRevD.89.04500. ‎arXiv:1311.5630v2‎

‎[128] Bagdoo, R. (2011) Cosmological Inconstant, ‎Supernovæ 1a and Decelerating Expansion, ‎General Science Journal, viXra: 1304.0169v1, ‎Internet Archive, ResearchGate. ‎

‎[129] Magnan, C. (2011) Le théorème du jardin, amds ‎édition, 244, 262.‎

‎[130] Wikipedia, Möbius strip. ‎https://en.wikipedia.org/wiki/M%C3%B6bius_strip

‎[131] Müller, X. (2018) Dark Matter, Elusive as Ever, ‎CNRS News. https://news.cnrs.fr/articles/dark-‎matter-elusive-as-ever

‎[132] Davies, P. (1988) The Forces of Nature, ‎Cambridge University Press, 1.4, 4.5.‎

‎[133] Cottingham, W.N., Greenwood, D.A. (2007) An ‎Introduction to the Standard Model of Particle ‎Physics (2nd ed.). Cambridge University Press.‎

‎[134] Schechter, J., Valle, J. W. F. (1980) Neutrino ‎masses in SU(2) ⊗ U(1) theories, Physical Review ‎D. 22 (9): 2227–2235. ‎Bibcode:1980PhRvD..22.2227S. ‎doi:10.1103/PhysRevD.22.2227.‎

‎[135] Fukuda, Y., et al. (1998) Measurements of the ‎solar neutrino flux from Super-Kamiokande's first ‎‎300 days. Physical Review Letters. 81 (6): 1158–‎‎1162. arXiv:hep-ex/9805021.‎

‎[136] Bouquet, A., Monnier, E. (2008) Matière sombre ‎et énergie noire, Dunod, 178. ‎

‎[137] Mohapatra, R. N., et al. (2007) Theory of ‎Neutrinos: a White Paper, Reports on Progress in ‎Physics. 70 (11): 1757–1867. arXiv:h ep-‎ph/0510213v2. doi:10.1088/0034-4885/70/11/R02. ‎S2CID 119092531.‎

‎[138] Esteban, I., et al. (2020) The fate of hints: ‎updated global analysis of three-flavor neutrino ‎oscillations. arXiv:2007.14792v1 ‎https://doi.org/10.1007/JHEP09%282020%29178‎

‎[139] Amsler, C., et al. (2008) Review of Particle ‎Physics. Physics Letters B. Volume 667, Issues 1–5. ‎p. 1-6. Bibcode:2008PhLB..667..1A. ‎doi:10.1016/j.physletb.2008.07.018.‎

‎[140] Hut, P., Olive, K. A. (1979) A cosmological upper ‎limit on the mass of heavy neutrinos, Physics ‎Letters B. 87 (1–2): 144–146. ‎Bibcode:1979PhLB..87..144H. doi:10.1016/0370-‎‎2693(79)90039-X.‎

‎[141] Goobar, A., Hannestad, S., Mörtsell, E., Tu, H. ‎‎(2006) The neutrino mass bound from WMAP 3 ‎year data, the baryon acoustic peak, the SNLS ‎supernovae and the Lyman-α forest, Journal of ‎Cosmology and Astroparticle Physics, 0606:019, ‎‎2006. arXiv:astro-ph/0602155v2 doi:10.1088/1475-‎‎7516/2006/06/019. S2CID 119535760.‎

‎[142] Di Valentino, E., Gariazzo, S., Mena, O. (2021) On ‎the most constraining cosmological neutrino mass ‎bounds, Physical Review D. 104: 083504. ‎arXiv:2106.15267v3. ‎doi:10.1103/PhysRevD.104.083504. S2CID ‎‎235669844.‎

‎[143] Di Valentino, E., Melchiorri, A. (2021) Neutrino ‎Mass Bounds in the era of Tension Cosmology, The ‎Astrophysical Journal Letters, Volume 931, Number ‎‎2. arXiv:2112.02993 ‎

‎[144] The Mainz Neutrino Mass Experiment (Press ‎release). Archived from the original on 3 March ‎‎2016. http://www.physik.uni-‎mainz.de/exakt/neutrino/en_experiment.html

‎[145] Die Neutrino-Waage geht in Betrieb Physik ‎Journal. Physik News. pro-physik.de (Press release ‎‎(in German). 12 June 2018. Archived from the ‎original on 16 June 2018. Retrieved 15 June 2018.‎

‎[146] The KATRIN Collaboration (2022) Direct neutrino-‎mass measurement with sub-electronvolt ‎sensitivity, Nature Physics 18, 160–166 . ‎doi:10.1038/s41567-021-01463-1‎

‎[147] Castelvecchi, D. (2022) How light is a neutrino? ‎The answer is closer than ever, Nature. ‎doi:10.1038/d41586-022-00430-x. PMID 35165410. ‎S2CID 246827702.‎

‎[148] Kunze, K. E., Cosmological Magnetic Fields, ‎Plasma Phys.Control.Fusion 55 (2013) 124026. ‎doi.org/10.1088/0741-3335/55/12/124026. ‎arXiv:1307.2153v1.‎

‎[149] Zweibel, Ellen, De l’importance des champs ‎magnétiques (1998) Recherche, Hors- Série, avril, ‎‎10, 90-93.‎

‎[150] Zweibel, E., Heiles, C. (1997) Magnetic fields in ‎galaxies and beyond, Nature, Vol. 385, p. 131-136.‎

‎[151] Riazuelo, A. (2020) Pour la Science, Hors-Série, ‎No 106, 54.‎

‎[152] Van Dokkum P. et al. (2018) A galaxy lacking ‎dark matter. Nature 555, 629-632. [153] Van ‎Dokkum P. et al. (2019) A second galaxy missing ‎dark matter in the NGC 1052 group. Astrophysical ‎Journal Letters, Vol. 874, No 1, L5-L13 (2019). ‎

‎[154] Wikipedia, Eridanus II. ‎https://en.wikipedia.org/wiki/Eridanus_II

‎[155] The European Space Agency (ESA) (2020) XMM-‎Newton discovers scorching gas in Milky Way’s ‎halo. ‎https://www.esa.int/Science_Exploration/Space_Science/‎

‎[156] Briggs, A. (2021) What is a magnetar? EarthSky. ‎https://earthsky.org/space/what-is-a-magnetar/‎

‎[157] Navarro, J.F., Frenk, C.S., White, F.D.M. (1996) ‎The Structure of Cold Dark Matter Halos, The ‎Astrophysical Journal, vol. 463,‎ p. 563. DOI ‎‎10.1086/177173, arXiv astro-ph/9508025‎

‎[158] Einasto, J. (1965), Kinematics and dynamics of ‎stellar systems, Trudy Inst. Astrofiz. Alma-Ata 5, 87‎

‎[159] Merritt, D., Graham, A., et al. (2006) Empirical ‎Models for Dark Matter Halos, The Astronomical ‎Journal, 132 (6): 2685–2700. arXiv:astro-‎ph/0509417. doi:10.1086/508988. S2CID 14511019.‎

‎[160] Bothun, G., Impey, C., McGaugh, S. (1997) Low-‎surface-brightness galaxies: hidden galaxies ‎revealed, Publications of the Astronomical Society ‎of the Pacific, 109: 745-758.‎

‎[161] Gong, X., Tang, M., Xu, Z. (2021) The Possible ‎Equation Of State Of Dark Matter in Low Surface ‎Brightness Galaxies, ‎https://doi.org/10.48550/arXiv.2007.02583v3‎

‎[162] Jackson, R.A., et al. (2021) The origin of low-‎surface-brightness galaxies in the dwarf regime, ‎https://doi.org/10.48550/arXiv.2007.06581v2‎

‎[163] Kovacs, O.E., Bogdan, A., Canning, R.E.A. (2019) ‎Constraining the dark matter halo mass of isolated ‎low-surface-brightness galaxies. ‎https://doi.org/10.48550/arXiv.1906.05867‎

‎[164] de Blok, W. J. G., McGaugh, S. S. (1997) The dark ‎and visible matter content of low surface ‎brightness disc galaxies, Monthly Notices of the ‎Royal Astronomical ‎

‎[165] Hannes, A. (1942) On the cosmogony of the solar ‎system, Stockholms Observatorium Annuler, vol. ‎‎14, pp.2.1-2.33 ‎https://ui.adsabs.harvard.edu/abs/1942StoAn..14.‎‎2A/abstract‎

‎[166] Hoyle, F. (1949) On the Cosmological Problem, ‎Journal: Monthly Notices of the Royal Astronomical ‎Society, Vol. 109, p365. ‎https://adsabs.harvard.edu/full/1949MNRAS.109..‎‎365H‎

‎[167] Bondi, H., Gold, T. (1948). The steady-state ‎theory of the expanding Universe. Monthly Notices ‎of the Royal Astronomical Society, 108 (3), 252-270.‎

‎[168] Dombrovski V.A. (1949), Doklady Akad. Nauk ‎Armenia, 10, 199‎

‎[169] Wikipedia, Hiltner, W.A. ‎https://en.wikipedia.org/wiki/W._Albert_Hiltner

‎[170] Tomoline, A. (1975) La Cosmogonie récréative, ‎Éditions de Moscou, 220, 221. ‎

‎[171] NASA's Fermi Gamma-ray Space Telescope. ‎https://fermi.gsfc.nasa.gov/‎

‎[172] Goodenough, L., Hooper, D. (2009) Possible ‎Evidence For Dark Matter Annihilation In The Inner ‎Milky Way From The Fermi Gamma Ray Space ‎Telescope. arXiv:0910.2998‎

‎[173] Sokol, J. (2016) A Seeker of Dark Matter’s Hidden ‎Light, Quanta ‎Magazine.https://www.quantamagazine.org/tracy‎-slatyer-searches-for-dark-matters-hidden- light-‎‎20160901/‎

‎[174] Cho, A. (2019) Physicists revive hunt for dark ‎matter in the heart of the Milky Way, Science. ‎doi:10.1126/science.aba1956.‎

‎[175] Cartlidge, E. (2015) X-ray signal from outer space ‎points to dark matter, Science. ‎www.science.org/content/article/x-ray-signal-‎outer-space-points-dark-matter

‎[176] Abazajian, K. N. (2014) Resonantly-Produced 7 ‎keV Sterile Neutrino Dark Matter Models and the ‎Properties of Milky Way Satellites, Physcal Review ‎Letters, 112, 161303. ‎https://doi.org/10.1103/PhysRevLett.112.161303‎

‎[177] Dessert, C., Rodd, N.L., Safdi, B.R. (2020) The ‎dark matter interpretation of the 3.5-keV line is ‎inconsistent with blank-sky observations, Science, ‎Vol. 367, Issue 6485, pp.1465-1467. DOI: ‎‎10.1126/science.aaw3772‎



How to Cite

Bagdoo, R. (2022). On Maxwell’s Reversed Laws as Root of Magnetic Monopoles in Dark Matter: Dark Matter. International Journal of Fundamental Physical Sciences, 12(3), 35-61. https://doi.org/10.14331/ijfps.2022.330154