Femtosecond Spin Dynamics Mechanism In Graphenes: The Bloch NMR-Schrödinger Probe

Authors

  • Moses E. Emetere Department of Physics, Covenant University Canaan land, P.M.B 1023, Ota, Nigeria
  • Bijan Nikouravan Department of Physics, Faculty of Science, Islamic Azad University (IAU), Varamin, Iran

DOI:

https://doi.org/10.14331/ijfps.2014.330073

Keywords:

femtosecond spin dynamics, Schrödinger, Bloch NMR, spin relaxation

Abstract

The mechanism of the femtosecond spin dynamics is still not properly understood. The remodeled Bloch-Schrödinger equation was incorporated into the Hamiltonian. The mechanism of the femtosecond dynamics was investigated under three quantum states. The spin relaxation mechanism operated in a single continuous time scale (>70ps) which was in variance with known postulate. The transient reflectivity was measured to be within an angular range of 18.6o to 90.0o at a pulse range of 1MHz to 6.5 MHz. Beyond the pulse intensity of -2.5, the system elapsed into a quasi-equilibrium state which explains the independence of the magnetic moment on the pulse intensity. Different possibilities of the femtosecond spin dynamics were worked out for future study.

Downloads

Download data is not yet available.

References

Beaurepaire, E., Merle, J.-C., Daunois, A., & Bigot, J.-Y. (1996). Ultrafast spin dynamics in ferromagnetic nickel. Physical review letters, 76(22), 4250.

Bigot, J.-Y., Guidoni, L., Beaurepaire, E., & Saeta, P. N. (2004). Femtosecond spectrotemporal magneto-optics. Physical review letters, 93(7), 077401.

Carva, K., Battiato, M., & Oppeneer, P. M. (2011). Is the controversy over femtosecond magneto-optics really solved? Nature Physics, 7(9), 665-665.

Chan, L.-O., Turgut, E., Teale, C. A., Kapteyn, H. C., Murnane, M. M., Mathias, S., Nembach, H. T. (2012). Ultrafast demagnetization measurements using extreme ultraviolet light: comparison of electronic and magnetic contributions. Physical Review X, 2(1), 011005.

Dedkov, Y. S., Fonin, M., Rüdiger, U., & Laubschat, C. (2008). Rashba effect in the graphene/Ni (111) system. Physical review letters, 100(10), 107602.

Dugaev, V., Sherman, E. Y., & Barnaś, J. (2011). Spin dephasing and pumping in graphene due to random spin-orbit interaction. Physical Review B, 83(8), 085306.

Emetere, M. E. (2013a). Mathematical Modelling of Bloch NMR to Explain the Rashba Energy Features. World Journal of Condensed Matter Physics, 3, 87.

Emetere, M. E. (2013b). MATHEMATICAL MODELLING OF BLOCH NMR TO SOLVE THE SCHRODINGER TIME DEPENDENT EQUATION. The African Review of Physics, 8.

Emetere, M. E. (2013c). Modeling the Non-Single Exponential Photoluminescence Decay Using the Boubaker Polynomial Expansion Scheme. Journal of Advanced Physics, 2(3), 213-215.

Emetere, M. E. (2013d). Quantum Information Technology Based on Magnetic Excitation of Single Spin Dynamics. Industrial Engineering Letters, 3(5), 33-36.

Emetere, M. E. (2014a). Characteristic Significance Of Magnetic Relaxations On Copper Oxide Thin Film Using The Bloch Nmr. Surface Review and Letters, 21(05).

Emetere, M. E. (2014b). Mathematical Modelling of Bloch NMR to Solve the Schrödinger Time Dependent Equation. Applied Mathematical Sciences, 8(56), 2753 – 2762 .

Emetere, M. E. (2014c). Profiling Laser-Induced Temperature Fields for Superconducting Materials Using Mathematical Experimentation. Journal of Thermophysics and Heat Transfer, 28(4), 700-707.

Emetere, M. E., & Bakeko, M. M. (2013). Determination of characteristic relaxation times and their significance in copper oxide thin film. Journal of the theoretical Physics and Cryptography, 4(1), 1-4.

Emetere, M. E., Uno, U. E., & Isah, K. (2014). A Remodeled Stretched Exponential–Decay Formula for Complex Systems. RESEARCH & REVIEWS: JOURNAL OF ENGINEERING AND TECHNOLOGY, 3(2), 4-12.

Fabian, J., Matos-Abiague, A., Ertler, C., Stano, P., & Žutić, I. (2007). Semiconductor spintronics. Acta Physica Slovaca. Reviews and Tutorials, 57(4-5), 565-907.

Han, W., McCreary, K., Pi, K., Wang, W., Li, Y., Wen, H., . Kawakami, R. (2012). Spin transport and relaxation in graphene. Journal of Magnetism and Magnetic Materials, 324(4), 369-381.

Hohlfeld, J., Matthias, E., Knorren, R., & Bennemann, K. (1997). Nonequilibrium magnetization dynamics of nickel. Physical review letters, 78(25), 4861.

Hübner, W., & Zhang, G. (1998). Femtosecond spin dynamics probed by linear and nonlinear magneto-optics. Journal of Magnetism and Magnetic Materials, 189(1), 101-105.

Ishima, R., & Torchia, D. A. (2000). Protein dynamics from NMR. Nature Structural & Molecular Biology, 7(9), 740-743.

Jeong, J.-S., Shin, J., & Lee, H.-W. (2011). Curvature-induced spin-orbit coupling and spin relaxation in a chemically clean single-layer graphene. Physical Review B, 84(19), 195457.

Jo, S., Ki, D.-K., Jeong, D., Lee, H.-J., & Kettemann, S. (2011). Spin relaxation properties in graphene due to its linear dispersion. Physical Review B, 84(7), 075453.

Kochan, D., Gmitra, M., & Fabian, J. (2014). Spin relaxation mechanism in graphene: resonant scattering by magnetic impurities. Physical review letters, 112(11), 116602.

Kotov, V. N., Uchoa, B., Pereira, V. M., Guinea, F., & Neto, A. C. (2012). Electron-electron interactions in graphene: Current status and perspectives. Reviews of Modern Physics, 84(3), 1067.

Lundeberg, M. B., Yang, R., Renard, J., & Folk, J. A. (2013). Defect-mediated spin relaxation and dephasing in graphene. Physical review letters, 110(15), 156601.

Melissinos, A. C., & Napolitano, J. (2003). Experiments in modern physics: Gulf Professional Publishing.

Nair, R., Sepioni, M., Tsai, I.-L., Lehtinen, O., Keinonen, J., Krasheninnikov, A., . . . Grigorieva, I. (2012). Spin-half paramagnetism in graphene induced by point defects. Nature Physics, 8(3), 199-202.

Ochoa, H., Neto, A. C., & Guinea, F. (2012). Elliot-yafet mechanism in graphene. Physical review letters, 108(20), 206808.

Palmer III, A. G. (2001). NMR probes of molecular dynamics: overview and comparison with other techniques. Annual review of biophysics and biomolecular structure, 30(1), 129-155.

Popinciuc, M., Józsa, C., Zomer, P., Tombros, N., Veligura, A., Jonkman, H., & Van Wees, B. (2009). Electronic spin transport in graphene field-effect transistors. Physical Review B, 80(21), 214427.

Schneider, H., Wüstenberg, J.-P., Andreyev, O., Hiebbner, K., Guo, L., Lange, J., . . . Aeschlimann, M. (2006). Energy-resolved electron spin dynamics at surfaces of p-doped GaAs. Physical Review B, 73(8), 081302.

Scholl, A., Baumgarten, L., Jacquemin, R., & Eberhardt, W. (1997). Ultrafast spin dynamics of ferromagnetic thin films observed by fs spin-resolved two-photon photoemission. Physical review letters, 79(25), 5146.

Shikoh, E., Ando, K., Kubo, K., Saitoh, E., Shinjo, T., & Shiraishi, M. (2013). Spin-pump-induced spin transport in p-Type Si at room temperature. Physical review letters, 110(12), 127201.

Subedi, P., Vélez, S., Macià, F., Li, S., Sarachik, M., Tejada, J., . . . Kent, A. (2013). Onset of a propagating self-sustained spin reversal front in a magnetic system. Physical review letters, 110(20), 207203.

Tombros, N., Tanabe, S., Veligura, A., Jozsa, C., Popinciuc, M., Jonkman, H., & Van Wees, B. (2008). Anisotropic spin relaxation in graphene. Physical review letters, 101(4), 046601.

Uno E . Emetere (2011). Mean-Field Analysis Of The Layering Transitions Of The Spin- 1/2 Ising Model In A Transverse Magnetic Field. Int. Journal for scientific research , 1(1), 7-13.

Uno, U., & Emetere, M. E. (2012). Analysis of the High Temperature Superconducting Magnetic Penetration Depth Using the Bloch NMR Equations. Global Engineers and Technologist Review, 2(1), 14-21.

Uno, U. E., Emetere, M. E., Isah, K., & Ahmadu, U. (2012). On The Effect of Electron-Hole Recombination in Disordered GaAs-Aa1-xALAs Multi-quantum Well Structure. International Journal of Fundamental Physical Sciences, 2(4).

Vaterlaus, A., Beutler, T., & Meier, F. (1991). Spin-lattice relaxation time of ferromagnetic gadolinium determined with time-resolved spin-polarized photoemission. Physical review letters, 67(23), 3314.

Walls, J. D., & Lin, Y.-Y. (2006). Constants of motion in NMR spectroscopy. Solid state nuclear magnetic resonance, 29(1), 22-29.

WILLIAMS, O. (2014). EVIDENCE OF POSITIONAL DOPING EFFECTS ON THE OPTICAL PROPERTIES OF DOPED TIN DIOXIDE (SnO2) WITH ZINC (Zn). Journal of Ovonic Research Vol, 10(4), 141-147.

Yazyev, O. V. (2010). Emergence of magnetism in graphene materials and nanostructures. Reports on Progress in Physics, 73(5), 056501.

Zhang, G., & Hübner, W. (1999). Femtosecond spin dynamics in the time domain. Journal of applied physics, 85(8), 5657-5659.

Zhou, Y., & Wu, M. (2010). Electron spin relaxation in graphene from a microscopic approach: Role of electron-electron interaction. Physical Review B, 82(8), 085304.

Downloads

Published

2014-12-30

How to Cite

Emetere, M. E. ., & Nikouravan, B. (2014). Femtosecond Spin Dynamics Mechanism In Graphenes: The Bloch NMR-Schrödinger Probe. International Journal of Fundamental Physical Sciences, 4(4), 105-110. https://doi.org/10.14331/ijfps.2014.330073

Issue

Section

ORIGINAL ARTICLES

Most read articles by the same author(s)