Universal Matter Synthesis and Management via Constructive Resonance: Pioneering Advancements in Physical Sciences and Applied Systems

Authors

  • Sanjay Bhushan Department of Management, QNCVC-Research Group, Quantum and Nano-Computing Virtual Centre, Centre ‎for Consciousness Studies (CCS), Dayalbagh Educational Institute (Deemed to be University), Dayalbagh, Agra ‎‎282 005, India

DOI:

https://doi.org/10.14331/ijfps.2023.330160

Keywords:

Constructive Resonance, Matter Creation, Gravitational Forces, Cosmic Information Vector, Dynamic Framework

Abstract

Constructive resonance, a fundamental phenomenon observed across various scales, plays a pivotal role in both quantum and astrophysical realms. This study delves into the dynamic intricacies of constructive resonance, exploring its implications for matter creation and the origin of force-fields like gravity. It posits that constructive wave couplings between fundamental particles induce a resonant attractive force akin to gravity at the subatomic level, conserving energy within the system. We conceptualize space-time as an interconnected fabric encoding linear and non-linear patterns within an Information Field, revealing interactions between fundamental particles as 'Constructive Resonance Waves,' giving rise to the material universe. Cosmic Information (CI) is introduced as a fundamental basis vector, tied to the dimensions of space and time, culminating in a 5-D universe. This paper introduces a novel theoretical framework encompassing Constructive Resonance and the  parametrically represented by to offer a dynamic perspective on fundamental forces. By integrating these concepts into existing theories, we unveil a fresh understanding of gravity, electromagnetism, and other forces. The RIIFF© framework, expressed as , elucidates how forces vary over time and space due to resonant interactions, providing a foundation for future research into the dynamic nature of the cosmos.

Downloads

Download data is not yet available.

Author Biography

Sanjay Bhushan , Department of Management, QNCVC-Research Group, Quantum and Nano-Computing Virtual Centre, Centre ‎for Consciousness Studies (CCS), Dayalbagh Educational Institute (Deemed to be University), Dayalbagh, Agra ‎‎282 005, India

ORCIDhttps://orcid.org/0000-0002-9357-7460

References

Adam, J., Adamczyk, L., Adams, J., Adkins, J., Agakishiev, G., Aggarwal, M., .Aparin, A. J. P. r. l. (2021). Measurement of e+ e− momentum and angular distributions from linearly polarized photon collisions. 127(5), 052302. doi:https://doi.org/10.1103/PhysRevLett.127.052302

Agaev, S., Azizi, K., & Sundu, H. J. N. P. A. (2021). Vector resonance X1 (2900) and its structure. 1011, 122202. doi:https://doi.org/10.1016/j.nuclphysa.2021.122202

Agrawal, P., Kitajima, N., Reece, M., Sekiguchi, T., & Takahashi, F. J. P. L. B. (2020). Relic abundance of dark photon dark matter. 801, 135136. doi:https://doi.org/10.48550/arXiv.1810.07188

Appleton, E. J. N. (1931). Polarisation of Downcoming Wireless Waves in the Southern Hemisphere. 128(3242), 1037-1037. doi:https://doi.org/10.1038/1281037a0

Bagguley, D., & Griffiths, J. J. N. (1947). Paramagnetic resonance and magnetic energy levels in chrome alum. 160(4068), 532-533. doi:https://doi.org/10.1038/160532b0

Brodsky, S. J., Zerwas, P. M. J. N. I., Methods in Physics Research Section A: Accelerators, S., Detectors, & Equipment, A. (1995). High energy photon-photon collisions. 355(1), 19-41. doi:https://doi.org/10.1016/0168-9002(94)01433-G

Chung, D. J., Kolb, E. W., Riotto, A., & Tkachev, I. I. J. P. R. D. (2000). Probing Planckian physics: Resonant production of particles during inflation and features in the primordial power spectrum. 62(4), 043508. doi:https://arxiv.org/abs/hep-ph/9810368

De Broglie, L. J. N. (1923). Waves and quanta. 112(2815), 540-540. doi:https://doi.org/10.1038/112540a0

Dirac, P. A. M., Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical, & Character, P. (1926). On the theory of quantum mechanics. 112(762), 661-677. doi:https://doi.org/10.1098/rspa.1926.0133

Dror, J. A., Harigaya, K., & Narayan, V. J. P. R. D. (2019). Parametric resonance production of ultralight vector dark matter. 99(3), 035036.

Einstein, A. (1915). Die feldgleichungen der gravitation(Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften). 844-847.

Einstein, A., Kommission bei W. de Gruyter. (1924). Quantentheorie des einatomigen idealen Gases. Akademie der Wissenshaften. 20. https://exampleURL.com/originaldocument.pdf

Gaillard, M. K., Grannis, P. D., & Sciulli, F. J. J. R. o. M. P. (1999). The standard model of particle physics. 71(2), S96. doi:https://doi.org/10.1038/nature06073

Goldzak, T., Gilary, I., & Moiseyev, N. J. M. P. (2012). Resonance energies, lifetimes and complex energy potential curves from standard wave-packet calculations. 110(9-10), 537-546. doi:https://doi.org/10.1080/00268976.2012.662599

Griffiths, D. J. (2005). Introduction to electrodynamics. In.

Hawking, S. W. J. N. (1974). Black hole explosions? , 248(5443), 30-31.

Heisenberg, W. J. Z. f. P. (1926). Mehrkörperproblem und Resonanz in der Quantenmechanik. 38(6-7), 411-426. doi:https://doi.org/10.1007/BF01397160

Jow, D. L., Scott, D. J. J. o. C., & Physics, A. (2020). Re-evaluating evidence for Hawking points in the CMB. 2020(03), 021. doi:https://doi.org/10.1088/1475-7516/2020/03/021

Kitajima, N., & Takahashi, F. J. P. R. D. (2023). Resonant production of dark photons from axions without a large coupling. 107(12), 123518. doi:https://doi.org/10.48550/arXiv.2303.05492

Kostyrko, M., Vasylkiv, Y., Skab, I., & Vlokh, R. J. R. i. O. (2023). Photon–phonon entanglement in the acousto-optic interaction of vector beams. 10, 100350. doi:https://doi.org/10.1016/j.rio.2023.100350

Leaver, E. W. J. P. o. t. R. S. o. L. A. M., & Sciences, P. (1985). An analytic representation for the quasi-normal modes of Kerr black holes. 402(1823), 285-298.

Li, J.-H., Liu, Z.-Y., Zhou, X.-Z., Li, L., Omura, Y., Yue, C., . . . Xie, L. J. C. P. (2022). Anomalous resonance between low-energy particles and electromagnetic plasma waves. 5(1), 300. doi:https://doi.org/10.1038/s42005-022-01083-y

Minami, Y., & Komatsu, E. J. P. R. L. (2020). New extraction of the cosmic birefringence from the Planck 2018 polarization data. 125(22), 221301. doi:https://doi.org/10.1103/PhysRevLett.125.221301

Mukhanov, V. F., Feldman, H. A., & Brandenberger, R. H. J. P. r. (1992). Theory of cosmological perturbations. 215(5-6), 203-333. doi:https://doi:10.1016/0370-1573(92)90044-Z

Nature, N. P. (2019). Big Bang theory. 15. doi:https://doi.org/10.1038/s41567-019-0720-4

Penrose, R. (2006). Before the big bang: an outrageous new perspective and its implications for particle physics. Paper presented at the Proceedings of EPAC.

Schneider, S., & Spitzer, R. J. N. (1974). Interaction of coherent electromagnetic waves with relativistic electrons in a medium. 250(5468), 643-645. doi:https://doi.org/10.1038/250643a0

Shi, Y.-H., Yang, R.-Q., Xiang, Z., Ge, Z.-Y., Li, H., Wang, Y.-Y., . . . Zheng, D. J. N. C. (2023). Quantum simulation of Hawking radiation and curved spacetime with a superconducting on-chip black hole. 14(1), 3263. doi:https://doi.org/10.1038/s41467-023-39064-6

Tegmark, M. (2015). Our mathematical universe: My quest for the ultimate nature of reality: Vintage.

Tsarev, M., Thurner, J. W., & Baum, P. J. N. P. (2023). Nonlinear-optical quantum control of free-electron matter waves. 1-5.

Wu, G.-B., Dai, J. Y., Shum, K. M., Chan, K. F., Cheng, Q., Cui, T. J., & Chan, C. H. J. N. C. (2023). A universal metasurface antenna to manipulate all fundamental characteristics of electromagnetic waves. 14(1), 5155. doi:https://doi.org/10.1038/s41467-023-40717-9

Xing, X., Yu, Y., Li, S., & Huang, X. J. S. r. (2013). How do spin waves pass through a bend? , 3(1), 2958. doi:https://doi.org/10.1038/srep02958

Yan, F., Krantz, P., Sung, Y., Kjaergaard, M., Campbell, D. L., Orlando, T. P., . . . Oliver, W. D. J. P. R. A. (2018). Tunable coupling scheme for implementing high-fidelity two-qubit gates. 10(5), 054062.

Yan, Z., Zhang, Y.-R., Gong, M., Wu, Y., Zheng, Y., Li, S., . . . Xu, Y. J. S. (2019). Strongly correlated quantum walks with a 12-qubit superconducting processor. 364(6442), 753-756.

Yang, T., Huang, L., Xiao, C., Chen, J., Wang, T., Dai, D., . . . Zhang, D. H. J. N. c. (2019). Enhanced reactivity of fluorine with para-hydrogen in cold interstellar clouds by resonance-induced quantum tunnelling. 11(8), 744-749. doi:https://doi.org/10.1038/s41557-019-0280-3

Yu, X., Principi, A., Tielrooij, K.-J., Bonn, M., & Kavokine, N. J. N. N. (2023). Electron cooling in graphene enhanced by plasmon–hydron resonance. 1-7. doi:https://doi.org/10.1038/s41565-023-01421-3

Published

2023-10-10

Issue

Section

ORIGINAL ARTICLES
Views: 260 / Download: 126 / Download: 46