New Classical Relativistic Theory of a Charged Particle in an Electric Field

Authors

  • Grigori.G. Karapetyan Independent Scientist, Yerevan, Armenia

DOI:

https://doi.org/10.14331/ijfps.2024.330163

Keywords:

Electric interaction, Coulomb potential, Negative Lorentz factor, Dynamic and static electric forces, Kinetic and potential energies

Abstract

A new relativistic theory of the classical motion of a charged particle in an electric field has been developed. The resulting equations characterize the kinematic and dynamic features of particle motion, demonstrating peculiar behavior in areas with high attractive potentials. This changes the existing paradigm for the interaction of charge with an electric field, entailing profound consequences. The new theory converges with the conventional theory of electricity under conditions of low potentials and nonrelativistic particle velocities. The possibility of experimental verification of the new theory is discussed.

Downloads

Download data is not yet available.

References

Andersen, C., & von Baeyer, H. C. J. A. o. P. (1971). On classical scalar field theories and the relativistic Kepler problem. 62(1), 120-134.

Bergmann, O. J. A. J. o. P. (1956). Scalar field theory as a theory of gravitation. I. 24(1), 38-42.

Bragança, D. P., & Lemos, J. P. J. T. E. P. J. C. (2018). Stratified scalar field theories of gravitation with self-energy term and effective particle Lagrangian. 78, 1-11.

Dowker, J. J. P. o. t. P. S. (1965). A scalar theory of gravitation. 85(3), 595.

Karapetyan, G. G. J. O. P. (2022). Radial oscillations of an electron in a Coulomb attracting field. 20(1), 1213-1215.

Kratzer, A. J. Z. f. P. (1920). Die ultraroten rotationsspektren der halogenwasserstoffe. 3, 289-307.

Landau, L. D. (2013). The classical theory of fields (Vol. 2): Elsevier.

Lindén, T. J. I. J. o. T. P. (1972). A scalar field theory of gravitation. 5, 359-368.

Macke, W. J. Z. A. M. u. M. (1959). LD Landau and EM Lifshitz, Quantum Mechanics, Non-Relativistic Theory. Volume 3 of a Course of Theoretical Physics. Authorized Translation from the Russian by JB Sykes and JS Bell. XII+ 515 S. m. 51 Abb. London-Paris 1958. Pergamon Press. Preis geb. 80,—s. 39(5-6), 250-250.

Mekhitarian, V. J. J. o. C. P. (2012). The invariant representation of generalized momentum. 47, 249-256.

Mekhitarian, V. J. J. o. C. P. (2018). Equations of relativistic and quantum mechanics and exact solutions of some problems. 53, 1-21.

Mekhitarian, V. J. Q. M. L. I. (2020). Equations of relativistic and quantum mechanics (without spin). 107-137.

Pomeranchuk, I., & Smorodinsky, Y. J. J. P. U. (1945). On the energy levels of systems with Z> 137. 9(2), 97-100.

Rafelski, J., Fulcher, L. P., & Klein, A. J. P. R. (1978). Fermions and bosons interacting with arbitrarily strong external fields. 38(5), 227-361.

Schwinger, J. J. P. R. (1951). On gauge invariance and vacuum polarization. 82(5), 664.

Sexl, R. U. J. F. d. P. (1967). Theories of gravitation. 15(4), 269-307.

Shapiro, S. L., & Teukolsky, S. A. J. P. R. D. (1993). Scalar gravitation: A laboratory for numerical relativity. 47(4), 1529.

Wellner, M., & Sandri, G. J. A. J. o. P. (1964). Scalar gravitation. 32(1), 36-39.

Zeldovich, Y. B., & Popov, V. S. J. S. P. U. (1972). Electronic structure of superheavy atoms. 14(6), 673.

Downloads

Published

20-03-2024

How to Cite

1.
Karapetyan G. New Classical Relativistic Theory of a Charged Particle in an Electric Field. Int. J. Fundam. Phys. Sci [Internet]. 2024 Mar. 20 [cited 2025 Jan. 22];14(1):7-13. Available from: https://www.fundamentaljournals.org/index.php/ijfps/article/view/225

Issue

Section

ORIGINAL ARTICLES