Neoclassical Theory of Atoms

Authors

  • Sudeer Punnery Independent Scientist, Manama, Kingdom of Bahrain

DOI:

https://doi.org/10.14331/ijfps.2024.330164

Keywords:

Newtonian Mechanics, Hydrogen spectra, coulomb potential, ionization Energy

Abstract

The "Neoclassical Theory of Atoms" challenges the dominance of quantum mechanics in explaining certain atomic phenomena. This work argues that a classical approach, utilizing electromagnetic Coulomb forces and Newtonian mechanics, can potentially account for discrete energy levels and spectral lines observed in hydrogen and helium atoms. It questions the necessity of invoking the seemingly counterintuitive aspects of quantum mechanics for these specific phenomena. By demonstrating the potential of a classical framework, this research aims to stimulate debate and exploration of alternative explanations within physics. This could potentially lead to a deeper understanding of the nature of reality and the limitations (or potential for expansion) of current physical theories.

Downloads

Download data is not yet available.

Author Biography

Sudeer Punnery, Independent Scientist, Manama, Kingdom of Bahrain

ORCID

References

Balmer, J. J. J. A. d. p. (1885). Notiz über die Spectrallinien des Wasserstoffs. 261(5), 80-87.

Bohr, N. (1913). The spectra of helium and hydrogen. 92(2295), 231-232.

Bohr, N. (1954). Rydberg's discovery of the spectral laws.

Cotton, S. (2024). Lanthanide and actinide chemistry: John Wiley & Sons.

Fricke, B. (2007). Superheavy elements a prediction of their chemical and physical properties. In Recent impact of physics on inorganic chemistry (pp. 89-144): Springer.

Griem, H. R., Blaha, M., & Kepple, P. C. J. P. R. A. (1979). Stark-profile calculations for Lyman-series lines of one-electron ions in dense plasmas. 19(6), 2421.

Hoffman, D. C., Lee, D. M., Pershina, V. J. T. c. o. t. a., & elements, t. (2006). Transactinide elements and future elements. 1652-1752.

Kramida, A. J. P. o. t. I. A. U. (2021). Legacy of Charlotte Moore Sitterly in the Internet Age. 18(S371), 12-40.

Lincoln, J. (2019). The Lyman and Paschen series of hydrogen–Trying to see invisible light. 57(5), 348-349.

Lyman, T., & Sciences. (1906). The spectrum of hydrogen in the region of extremely short wave-length. 13(3), 125-146.

Lyman, T. J. N. (1914). An extension of the spectrum in the extreme ultra-violet. 93(2323), 241-241.

Mohr, P. J., Taylor, B. N., Newell, D. B. J. J. o. P., & Data, C. R. (2008). CODATA recommended values of the fundamental physical constants: 2006. 37(3), 1187-1284.

NAGAOKA, H., & MISHIMA, T. (1938). High Terms of Paschen Series in Hydrogen and Deuterium. 14(2), 53-56.

Suemoto, Z., & Hiei, E. (1959). Balmer series lines of the flare and its structure. 11, 185.

Published

2024-04-19

Issue

Section

ORIGINAL ARTICLES