A Diamond Universe

Physics

Authors

  • Bernard GUY Researcher Retired from Mines Saint-Etienne, Institut Mines Télécom, 158 Cours Fauriel, 42023 Saint-Etienne Cedex 2, France

DOI:

https://doi.org/10.14331/ijfps.2024.330166

Keywords:

Cosmology, dark matter, dark energy, Shapiro effect, Schwarzschild metric

Abstract

Cosmology is currently facing some major challenges. In addition to dark matter and dark energy, the issue of ‘impossible’ galaxies has been brought to the fore by the James Webb Telescope. Something simple eludes us, and the various problems mentioned are interrelated. Our proposition is that, on the cosmological scale, it is appropriate to take a value of the speed of light cc  lower than its standard value c0 in vacuum. This defines an optical index cc =c0./cc We account for this ‘refringence’ by a Shapiro effect extended to the scale of the universe (use of Schwarzschild metric), described by its average density ρu and its equivalent gravitational radius Ru. Remarkably, universes with indices greater than two are entirely conceivable, and their characteristics are close to those we determine for our own. The velocities  of celestial objects are estimated from redshifts in ratios of the type v/c, where the speed  of light is usually taken to be equal to . With an equal  ratio v/c (all things considered, only the v/c ratio has any meaning), dividing c0 by a certain factor  lowers the velocities v without postulating the existence of dark matter nor dark energy. Taking into account the problems cited earlier suggests a value of α close to 2.4. We are led to a lengthening of the age of the universe: it could reach 33 billion years. This would allow it to host in its relatively young phases objects that are already old and structured.

Downloads

Download data is not yet available.

Author Biography

Bernard GUY, Researcher Retired from Mines Saint-Etienne, Institut Mines Télécom, 158 Cours Fauriel, 42023 Saint-Etienne Cedex 2, France

ORCID

References

Asgari, M., Tröster, T., Heymans, C., Hildebrandt, H., van den Busch, J. L., Wright, A. H., . . . Astrophysics. (2020). KiDS+ VIKING-450 and DES-Y1 combined: Mitigating baryon feedback uncertainty with COSEBIs. 634, A127.

Aubert, D. (2019). Cosmologie physique: Editions Ellipses.

Bekenstein, J. D. (2009). Relativistic MOND as an alternative to the dark matter paradigm. Nuclear Physics A, 827(1-4), 555c-560c.

Bertone, G. (2014). The mystery of dark matter. Behind the scenes of the universe. In.

Borka, D., Capozziello, S., Jovanović, P., & Jovanović, V. B. J. A. p. (2016). Probing hybrid modified gravity by stellar motion around Galactic Center. 79, 41-48.

Boyett, K., Trenti, M., Leethochawalit, N., Calabró, A., Metha, B., Roberts-Borsani, G., . . . Treu, T. J. N. A. (2024). A massive interacting galaxy 510 million years after the Big Bang. 8(5), 657-672.

Buchert, T. (2000). On average properties of inhomogeneous fluids in general relativity: dust cosmologies. General Relativity, 32, 105-125.

Buchert, T. (2008). Dark energy from structure: a status report. General Relativity, 40, 467-527.

Buchert , T. L., Jean-Marc Bonnet-Bidaud. (2012). Un autre cosmos.

Chardin, G. (2018). L'insoutenable gravité de l'univers: Le Pommier.

Claeskens, J. (2003). Les mirages gravitationnels et les paramètres cosmologiques. thesis, Université de Liège,

Copi, C. J., Schramm, D. N., & Turner, M. S. J. S. (1995). Big-bang nucleosynthesis and the baryon density of the universe. 267(5195), 192-199.

Evans, J., Nandi, K. K., & Islam, A. (1996). The optical-mechanical analogy in general relativity: exact Newtonian forms for the equations of motion of particles and photons. General relativity gravitation, 28, 413-439.

Feynman, R. P. J. (1963). The Feynman lectures on physics. 1, 46.

Fleury, P., Dupuy, H., & Uzan, J.-P. J. P. R. D. (2013). Interpretation of the Hubble diagram in a nonhomogeneous universe. 87(12), 123526.

Gasparini, A. (2020). Cosmologie & relativité générale: une première approche: Presses polytechniques et universitaires romandes.

Gupta, R. P. J. M. N. o. t. R. A. S. (2023). JWST early Universe observations and ΛCDM cosmology. 524(3), 3385-3395.

Guy, B. (2011). Thinking time and space together. Philosophia Scientiae, 15(3), 91-113.

Guy, B. (2018). Linking quantum mechanics and general relativity together? Reflections and Propositions.

Guy, B. (2019). SPACE= TIME. Dialog on the system of the world. In: Paris: PENTA Editions.

Guy, B. (2022). Review of the status of the" speed of light” and examination of some cosmological problems.

Huterer, D., & Turner, M. S. (1999). Prospects for probing the dark energy via supernova distance measurements. Physical Review D, 60(8), 081301.

Jánossy, L. (1971). Theory of relativity based on physical reality: Akadémiai Kiadó.

Jiao, Y., Hammer, F., Wang, H., Wang, J., Amram, P., Chemin, L., . . . Astrophysics. (2023). Detection of the Keplerian decline in the Milky Way rotation curve. 678, A208.

Landau, L., & Lifschitz, E. (1970). Field Theory, Theoretical Physics. In: Addison-Wesley New York.

Lehoucq, R., & Uzan, J.-P. (2005). Les constantes fondamentales: Belin, Paris.

Lorentz, H., Einstein, A., Minkowski, H., & Einstein, A. (1922). Kosmologische Betrachtungen zur allgemeinen Relativitäts-theorie: Springer.

Maeder, A. (2017a). An alternative to the ΛCDM model: The case of scale invariance. The Astrophysical Journal, 834(2), 194.

Maeder, A. (2017b). Dynamical effects of the scale invariance of the empty space: The fall of dark matter? The Astrophysical Journal, 849(2), 158.

Maiolino, R., Scholtz, J., Witstok, J., Carniani, S., D’Eugenio, F., de Graaff, A., . . . Arribas, S. J. N. (2024). A small and vigorous black hole in the early Universe. 627(8002), 59-63.

McGaugh, S. S. (2014). The third law of galactic rotation. Galaxies, 2(4), 601-622.

McGaugh, S. S., Lelli, F., & Schombert, J. M. J. P. R. L. (2016). Radial acceleration relation in rotationally supported galaxies. 117(20), 201101.

Milgrom, M. (2002). MOND—theoretical aspects. New Astronomy Reviews, 46(12), 741-753.

Möller, C. (1952). The Theory Of Relativity. 409.

Nandi, K. K., & Islam, A. (2009). On the optical-mechanical analogy in general relativity. arXiv preprint arXiv:.

O’Raifeartaigh, C., O’Keeffe, M., Nahm, W., & Mitton, S. J. T. E. P. J. H. (2017). Einstein’s 1917 static model of the universe: a centennial review. 42, 431-474.

Page, C., & Tupper, B. (1968). Scalar gravitational theories with variable velocity of light. Monthly Notices of the Royal Astronomical Society, 138(1), 67-72.

Paturel, G., & Teerikorpi, P. (2006). The extragalactic Cepheid bias: a new test using the period-luminosity-color relation. Astronomy Astrophysics, 452(2), 423-430.

Paturel, G., Teerikorpi, P., & Baryshev, Y. J. F. o. P. (2017). Hubble law: measure and interpretation. 47, 1208-1228.

Perlmutter, S., Turner, M. S., & White, M. J. P. R. L. (1999). Constraining dark energy with type Ia supernovae and large-scale structure. 83(4), 670.

Poincaré, H. (1902, 1905). La science et l'hypothèse: Flammarion.

Pszota, M., & Ván, P. (2023). Field equation of thermodynamic gravity and galactic rotational curves. arXiv preprint arXiv:.01825.

Rubin, V. C., & Ford Jr, W. K. J. A. J., vol. 159, p. 379. (1970). Rotation of the Andromeda nebula from a spectroscopic survey of emission regions. 159, 379.

Sarazin, X., Couchot, F., Djannati-Ataï, A., & Urban, M. J. T. E. P. J. C. (2018). Can the apparent expansion of the universe be attributed to an increasing vacuum refractive index? , 78(6), 1-9.

Schwarzschild, K. J. S. d. k. p. A. d. W. z. B. (1916). Über das Gravitationsfeld einer Kugel aus inkompressibler Flüssigkeit nach der Einsteinschen Theorie. 424-434.

Shapiro, I. I. J. P. R. L. (1964). Fourth test of general relativity. 13(26), 789.

Straumann, N. J. a. p. a.-p. (2000). Reflections on gravity.

Sus, A. (2014). Dark matter, the equivalence principle and modified gravity. Studies in History Philosophy of Science Part B: Studies in History

Philosophy of Modern Physics, 45, 66-71.

Szondy, G. (2003). Mathematical Equivalency of the Ether Based Gavitation Theory of Janossy and General Relativity. arXiv preprint gr-qc/0310108.

Ván, P., Abe, S., & Applications, i. (2022). Emergence of extended Newtonian gravity from thermodynamics. Physica A: Statistical Mechanics, 588, 126505.

Zwicky, F. (1933). Die rotverschiebung von extragalaktischen nebeln. J Helvetica Physica Acta, 6, 110-127.

Published

2024-06-08

Issue

Section

ORIGINAL ARTICLES