The effect of operational parameters on the output power of copper vapor laser with small-bore tube

Copper vapor laser

Authors

  • S. Behrouzinia Laser and Optics Research School, Nuclear Science and Technology Research School, Atomic Energy Organization of Iran, Tehran, Iran
  • M. Zand Laser and Optics Research School, Nuclear Science and Technology Research School, Atomic Energy Organization of Iran, Tehran, Iran,
  • A. Namdar Department of Physics, Azarbaijan University of Tarbiat Moallem, Tabriz, Iran
  • H. Rahimi Department of Physics, Azarbaijan University of Tarbiat Moallem, Tabriz, Iran,
  • A. Moghimi Department of Chemistry, Islamic Azad University, Varamin (Pishva) Branch, Varamin, Iran

DOI:

https://doi.org/10.14331/ijfps.2012.330015

Keywords:

Copper vapor laser, small bore, operational parameters

Abstract

The effects of buffer gas pressure, electrical input power and pulse repetition frequency on the output power of 510.6- and 578.2nm transitions have been experimentally investigated in a copper vapor laser with small-bore tube (11mm of diameter and 580mm of length). It is observed that the output power characteristics are strongly influenced by these parameters. A maximum output power of laser is obtained at about 4W with 27 kHz of pulse repetition frequency, 30 torr of Ne buffer gas pressure and 1.42kW of electrical input power. The waveforms of the current, tube voltage and laser pulses have also been observed.

Downloads

Download data is not yet available.

Author Biography

A. Moghimi, Department of Chemistry, Islamic Azad University, Varamin (Pishva) Branch, Varamin, Iran

 

 

REFERENCES

Behrouzinia.S., Namdar, A.R., Zand,M., Barry, R., (2006). Effect of a magnetic pulse compression circuit on the operation of a halide laser. Laser Physics 16, 12, 1616-1620.

Behrouzinia, S., Sadighi, R., Parvin, P., (2004). Temperature dependence of the amplifying parameters of a copper vapor laser. Laser Physics 14,8, 1050-1053.

Behrouzinia,S., Sadighi, R., Parvin, P, (2003). Pressure dependence of the small-signal gain and saturation intensity of a copper vapor laser. Applied Optics, 42, 6, 1013- 1018.

Coutts, D.W., Brown, D.J., (1995). IEEE J.Select. Topics Quantum Electron, 1,768-778.

Coutts, D.W., Wadsworth, D.J., Webb, C.E., (1998). J.Mod.Opt., 45, 1185- 1189. German, E.R., (1987). Proc.SPIE 737, 28-30.

Grant, I., (1997). Proc.Inst.Mech.Eng., 211, 55-76.

Hogan, G.P., Webb, C.E., (1995). Pre-ionization and discharge breakdown in the copper vapour laser: the phantom current. Opt.Commun. 117, 570-9.

Isaev, A.A., Kazaryan, M.A., Petrash, G.G., 1972. Effective pulsed copper-vapor laser with high average generation power. JETP Lett. 16(1), 27-29.

Knowles, M.R.H., (2000). Optics Express 7, 50.

Lewis, R.R., (1991). Opt.Quantum Electron.23, S493.

Little, C.E., Sabotinov, N.V., (1996). Pulse Metal Vapor Lasers Physics Engineering and Applications. Dordrecht: Kluwer Academic.

Mokrushin, Yu.M., Shakin, O.V., (1996). J.Russ. Laser Res. 17, 381.

Stamp, J.M., Flower, G.J.S., Devonshire, R., Williams, J.L., (1990). Laser Med. Sci. 5, 371

Winterbone, D.E., Yates, D.A., Rao, K.K., Gomes, P., Sun, J.H., (1994). Proc.Inst. Mech.Eng., 208, 223-240.

Zemskov, K.I., Kazaryan, M.A., Mokerov, V.G., Petrash, G.G., Petrova, A.G., (1978). Sov. J.Quantum Electron. 8, 245.

Downloads

Published

2011-09-30

Issue

Section

ORIGINAL ARTICLES

Most read articles by the same author(s)