Structural and Optical Properties of SiOx/Au/SiOx Layer Films on the Effect of Rapid Thermal Annealing Process

Chemical Vapour Deposition

Authors

  • Najwa Rosli Low Dimensional Materials Research Centre, Department of Physics, University of Malaya, 50603, Kuala Lumpur, Malaysia y
  • Keewah Chan Low Dimensional Materials Research Centre, Department of Physics, University of Malaya, 50603, Kuala Lumpur, Malaysia y
  • Saadah A. Rahman Low Dimensional Materials Research Centre, Department of Physics, University of Malaya, 50603, Kuala Lumpur, Malaysia y
  • Ilyani Putri Jamal Low Dimensional Materials Research Centre, Department of Physics, University of Malaya, 50603, Kuala Lumpur, Malaysia y
  • Zarina Aspanut Low Dimensional Materials Research Centre, Department of Physics, University of Malaya, 50603, Kuala Lumpur, Malaysia y

DOI:

https://doi.org/10.14331/ijfps.2011.330018

Keywords:

Silicon, Plasma Enhanced Chemical Vapour Deposition (PECVD), FE-SEM, XRD

Abstract

In this work, layered of silicon suboxide/gold/silicon suboxide (SiOx/Au/SiOx) films were prepared by using hot-wire plasma enhanced chemical vapor deposition (HW-PECVD) system. The films prepared underwent rapid thermal annealing (RTA) process for time periods of 100s, 500s and 700s at temperature of 800oC in vacuum. The effects of RTA on the structural and morphology from FE-SEM, Auger and XRD measurement of the films were studied. The surface plasmon resonance (SPR) effect exhibited by Au particles was obtained from the optical absorption spectra. SPR peaks were exhibited by films which annealed for long time duration. The band gap energy of the annealed samples was found to be in the range of 1.8 to 2.05 eV.

Downloads

Download data is not yet available.

Author Biography

Zarina Aspanut, Low Dimensional Materials Research Centre, Department of Physics, University of Malaya, 50603, Kuala Lumpur, Malaysia y

 

REFERENCES
Armelao, L., Barreca, D., Bottaro, G., Gasparotto, A., Tondello, E., Ferroni, M., & Polizzi, S. (2004). Au/TiO2 nanosystems: a combined RF-Sputtering/Sol-Gel approach. Chemistry of materials, 16(17), 3331-3338.

Balamurugan, B., & Maruyama, T. (2007). Size-modified d bands and associated interband absorption of Ag nanoparticles. Journal of applied physics, 102, 034306.

Chan, K., Aspanut, Z., Goh, B., Muhamad, M. R., & Rahman, S. A. (2011). Formation of gold nanoparticles in silicon suboxide films prepared by plasma enhanced chemical vapour deposition. Thin solid films.

Choi, W., Choo, C., & Lu, Y. (1996). Electrical characterization of rapid thermal annealed radio frequency sputtered silicon oxide films. Journal of applied physics, 80(10), 5837-5842.

Fu, G., Cai, W., Kan, C., Li, C., & Zhang, L. (2003). Controllable optical properties of Au/SiO nanocomposite induced by ultrasonic irradiation and thermal annealing. Applied physics letters, 83, 36.

Garcia-Serrano, J., Galindo, A., & Pal, U. (2004). Au-Al2O3 nanocomposites: XPS and FTIR spectroscopic studies. Solar energy materials and solar cells, 82(1-2), 291-298.

Jung, K. H., Yoon, J. W., Koshizaki, N., & Kwon, Y. S. (2008). Fabrication and characterization of Au/SiO2 nanocomposite films grown by radio-frequency cosputtering. Current Applied Physics, 8(6), 761-765.

Ko, H. Y. Y., Mizuhata, M., Kajinami, A., & Deki, S. (2005). The dispersion of Au nanoparticles in SiO< sub> 2</sub>/TiO< sub> 2</sub> layered films by the liquid phase deposition (LPD) method. Thin solid films, 491(1), 86-90.

Pal, U., Almanza, E. A., Cuchillo, O. V., Koshizaki, N., Sasaki, T., & Terauchi, S. (2001). Preparation of Au/ZnO nanocomposites by radio frequency co-sputtering. Solar energy materials and solar cells, 70(3), 363-368.

Ruffino, F., Bongiorno, C., Giannazzo, F., Roccaforte, F., Raineri, V., & Grimaldi, M. (2007). Effect of surrounding environment on atomic structure and equilibrium shape of growing nanocrystals: gold in/on SiO 2. Nanoscale Research Letters, 2(5), 240-247.

Sangpour, P., Akhavan, O., Moshfegh, A., & Roozbehi, M. (2007). Formation of gold nanoparticles in heat-treated reactive co-sputtered Au-SiO< sub> 2</sub> thin films. Applied Surface Science, 254(1), 286-290.

Scalisi, A., Compagnini, G., D'Urso, L., & Puglisi, O. (2004). Nonlinear optical activity in Ag-SiO2 nanocomposite thin films with different silver concentration. Applied Surface Science, 226(1-3), 237-241.

Severi, M., Mattei, G., Dori, L., Maccagnani, P., Baldini, G., & Pizzochero, G. (1992). Electrical properties of thin SiO2 films nitrided in N2O by rapid thermal processing. Microelectronic Engineering, 19(1-4), 657-660.

Su, X., Li, M., Zhou, Z., Zhai, Y., Fu, Q., Huang, C., . . . Hao, Z. (2008). Microstructure and multiphoton luminescence of Au nanocrystals prepared by using glancing deposition method. Journal of Luminescence, 128(4), 642-646.

Tsuji, H., Arai, N., Ueno, K., Matsumoto, T., Gotoh, N., Adachi, K., . Ishikawa, J. (2006). Formation of mono-layered gold nanoparticles in shallow depth of SiO< sub> 2</sub> thin film by low-energy negative-ion implantation. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 242(1), 125-128.

Xu, J., & Perry, C. C. (2007). A novel approach to Au@ SiO2 core-shell spheres. Journal of Non-Crystalline Solids, 353(11-12), 1212-1215.

Yu, J., & Lu, Y. (2000). Effects of rapid thermal annealing on ripple growth in excimer laser-irradiated silicon-dioxide/silicon substrates. Applied Surface Science, 154, 670-674.

Zhuo, B., Li, Y., Teng, S., & Yang, A. (2010). Fabrication and characterization of Au/SiO2 nanocomposite films. Applied Surface Science, 256(10), 3305-3308.

 

Downloads

Published

2011-12-31

Issue

Section

ORIGINAL ARTICLES