Spectral variations in supercontinuum pulse propagation

Nonlinear Schrödinger Equation


  • Moosa Shafiu Department of Physics, University of Malaya, 50603 Kuala Lumpur, Malaysia




Supercontinuum Generation, Nonlinear Schrödinger Equation, Self Phase Modulation, Raman Scattering, Self Frequency Shift


In this paper, we have used the general nonlinear Schrödinger equation (GNLSE) to study the spectral evolution of a short light pulse propagating through an optical fiber. The equation includes the main factors affecting its propagation through the fiber, involving the linear and nonlinear dispersive characteristics. We find the asymmetry feature of the spectrum due to the Raman Effect. The first order group velocity dispersion sets in after a finite propagation length. We have systematically studied the evolution of the pulse through a nonlinear medium.


Download data is not yet available.

Author Biography

Moosa Shafiu, Department of Physics, University of Malaya, 50603 Kuala Lumpur, Malaysia




Agrawal, G. (2000). Nonlinear fiber optics. Nonlinear Science at the Dawn of the 21st Century, 195-211.

Blow, K. J., & Wood, D. (1989). Theoretical description of transient stimulated Raman scattering in optical fibers. Quantum Electronics, IEEE Journal of, 25(12), 2665-2673.

Delbarre, H., & Tassou, M. (2000). Atmospheric gas trace detection with ultrashort pulses or white light continuum.

Dunsby, C., Lanigan, P., McGinty, J., Elson, D., Requejo-Isidro, J., Munro, I., Önfelt, B. (2004). An electronically tunable ultrafast laser source applied to fluorescence imaging and fluorescence lifetime imaging microscopy. Journal of Physics D: Applied Physics, 37, 3296.

Ere-Tassou, M., Przygodzki, C., Fertein, E., & Delbarre, H. (2003). Femtosecond laser source for real-time atmospheric gas sensing in the UV-visible. Optics communications, 220(4-6), 215-221.

Hartl, I., Li, X., Chudoba, C., Ghanta, R., Ko, T., Fujimoto, J., Windeler, R. (2001). Ultrahigh-resolution optical coherence tomography using continuum generation in an air–silica microstructure optical fiber. Optics letters, 26(9), 608-610.

Hasegawa, A., & Tappert, F. (1973). Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion. Applied Physics Letters, 23(3), 142-144.

Hilligsøe, K. M. (2005). Nonlinear Wave Propagation in Photonic Crystal Fibers and Bose-Einstein Condensates. Department of Physics and Astronomy, University of Aarhus.

Hilligsøe, K. M., Paulsen, H. N., Thøgersen, J., Keiding, S. R., & Larsen, J. J. (2003). Initial steps of supercontinuum generation in photonic crystal fibers. JOSA B, 20(9), 1887-1893.

Hsiung, P. L., Chen, Y., Ko, T., Fujimoto, J., de Matos, C., Popov, S., Gapontsev, V. (2004). Optical coherence tomography using a continuous-wave, high-power, Raman continuum light source. Optics Express, 12(22), 5287-5295.

Jones, D. J., Diddams, S. A., Ranka, J. K., Stentz, A., Windeler, R. S., Hall, J. L., & Cundiff, S. T. (2000). Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science, 288(5466), 635.

Morioka, T., Mori, K., & Saruwatari, M. (1993). More than 100-wavelength-channel picosecond optical pulse generation from single laser source using supercontinuum in optical fibres. Electronics Letters, 29(10), 862-864.

Morioka, T., Takara, H., Kawanishi, S., Kamatani, O., Takiguchi, K., Uchiyama, K.,. Kanamori, T. (1996). 1 Tbit/s (100 Gbit/s× 10 channel) OTDM/WDM transmission using a single supercontinuum WDM source. Electronics Letters, 32(10), 906-907.

Ranka, J. K., Windeler, R. S., & Stentz, A. J. (2000). Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm. Optics letters, 25(1), 25-27.

Sanders, S. (2002). Wavelength-agile fiber laser using group-velocity dispersion of pulsed super-continua and application to broadband absorption spectroscopy. Applied Physics B: Lasers and Optics, 75(6), 799-802.

Ye, J., Schnatz, H., & Hollberg, L. W. (2003). Optical frequency combs: From frequency metrology to optical phase control. Selected Topics in Quantum Electronics, IEEE Journal of, 9(4), 1041-1058.





How to Cite

Shafiu, M. . (2011). Spectral variations in supercontinuum pulse propagation: Nonlinear Schrödinger Equation. International Journal of Fundamental Physical Sciences, 1(4), 87-90. https://doi.org/10.14331/ijfps.2011.330021