Negative Matter as Unified Dark Matter and Dark ‎Energy: Simplest Model, Theory and Nine Tests

Dark Matter and Dark ‎Energy

Authors

  • Yi-Fang Chang Department of Physics, Yunnan University, Kunming, 650091, China

DOI:

https://doi.org/10.14331/ijfps.2020.330141

Keywords:

Negative Matter‎, Repulsion‎, Dark Matter, Dark Energy, Inflation, Quantum, Ratio, Test, Field, Equation

Abstract

Based on Dirac’s negative energy, we propose and study the negative matter. Bondi’s results are wrong. First, the negative matter can be the simplest model of unified dark matter and dark energy. Next, we discuss various possible theories of the negative matter: some field equations, similar electrodynamics, field equations with non-symmetry, etc. Third, the quantum theory of negative matter is researched. Matter surrounded by dark-negative matter corresponds to an infinitely deep potential trap in quantum mechanics and forms a base of the universal wave-particle duality and quantum mechanics. Fourth, we propose the mechanism of inflation as the origin of positive-negative matters created from nothing. Fifth, assume that dark matter is completely the negative matter, and we may calculate an evolutional ratio between total matter and usual matter from 1 of inflation and the radiation-dominated universe to 7.88 of the present matter-dominated universe. It agrees with the observed value 6.36~7. Sixth, we research the relativity of the negative matter and theory in Lobachevskian geometry. Seventh, we propose a judgment test of the negative matter as dark matter is opposite repulsive lensing and other eight possible tests. Eighty, we propose a figure on the unification of the four basic interactions in three-dimensional space, in which the “running” coupling constants of strong and weak interactions transform each other. The negative matter as a candidate of unification of dark matter and dark energy is not only the simplest, and may explain inflation and be calculated and tested.

Downloads

Download data is not yet available.

Author Biography

Yi-Fang Chang, Department of Physics, Yunnan University, Kunming, 650091, China

Yi-Fang Chang. Professor, Department of Physics, Yunnan University, China. Research theoretical physics (including entropy change, dark matter, and dark energy, particles and interactions, special and general relativity, astrophysics, mathematical physics, etc.) and some cross-cutting sciences. So far, published 400 papers in Chinese and English. Editor of International Journal of Modern Theoretical Physics.

 

REFERENCES

Aalseth, Craig E, Barbeau, PS, Bowden, NS, Cabrera-Palmer, B, Colaresi, J, Collar, JI, . . . Fields, N. (2011). Results from a search for light-mass dark matter with a p-type point contact germanium detector. Physical Review Letters, 106(13), 131301.

Aalseth, Craig E, Barbeau, PS, Colaresi, J, Collar, JI, Leon, J Diaz, Fast, James E, . . . Kephart, Jeremy D. (2011). Search for an annual modulation in a p-type point contact germanium dark matter detector. Physical Review Letters, 107(14), 141301.

Abbott, Benjamin P, Abbott, Rich, Abbott, TD, Acernese, Fausto, Ackley, Kendall, Adams, Carl, . . . Adya, VB. (2017). GW170817: observation of gravitational waves from a binary neutron star inspiral. Physical Review Letters, 119(16), 161101.

Abbott, Benjamin P, Abbott, Richard, Abbott, TD, Abernathy, MR, Acernese, Fausto, Ackley, Kendall, . . . Adhikari, RX. (2016). Observation of gravitational waves from a binary black hole merger. Physical review letters, 116(6), 061102.

Adam, R, Ade, Peter AR, Aghanim, N, Akrami, Y, Alves, MIR, Argüeso, F, . . . Aumont, J. (2016). Planck 2015 results-I. Overview of products and scientific results. Astronomy & Astrophysics, 594, A1.

Ahmed, Z, & collaboration, CDMS. (2009). Results from the Final Exposure of the CDMS II Experiment. arXiv preprint arXiv:0912.3592.

Albrecht, Andreas, & Steinhardt, Paul J. (1982). Cosmology for grand unified theories with radiatively induced symmetry breaking. Physical Review Letters, 48(17), 1220.

Aprile, E, Arisaka, K, Arneodo, Francesco, Askin, A, Baudis, L, Behrens, A, . . . Bruno, G. (2011). Dark matter results from 100 live days of XENON100 data. Physical Review Letters, 107(13), 131302.

Ball, Philip. (2016). Focus: LIGO Bags Another Black Hole Merger. Physics, 9, 68.

Ballentine, LE. (1998). Quantum mechanics-a modern development-L. Ballentine. Am. J. Phys, 59, 1153.

Barger, Vernon, Langacker, Paul, McCaskey, Mathew, Ramsey-Musolf, Michael J, & Shaughnessy, Gabe. (2008). CERN LHC phenomenology of an extended standard model with a real scalar singlet. Physical Review D, 77(3), 035005.

Bernabei, R, Belli, P, Cappella, F, Cerulli, R, Dai, CJ, d’Angelo, A, . . . Ma, JM. (2008). First results from DAMA/LIBRA and the combined results with DAMA/NaI. The European Physical Journal C, 56(3), 333-355.

Bernabei, R, Belli, P, Cerulli, R, Montecchia, F, Amato, M, Ignesti, G, . . . He, HL. (2000). Search for WIMP annual modulation signature: Results from DAMA/NaI-3 and DAMA/NaI-4 and the global combined analysis. Physics Letters B, 480(1-2), 23-31.

Bernabei, Rita, Belli, P, Cappella, F, Caracciolo, V, Castellano, S, Cerulli, R, . . . Di Marco, A. (2013). Final model independent result of DAMA/LIBRA–phase1. The European Physical Journal C, 73(12), 2648.

Binney, James, & Tremaine, Scott. (2011). Galactic dynamics: Princeton university press.

Bondi, Hermann. (1957). Negative mass in general relativity. Reviews of Modern Physics, 29(3), 423.

Cai, Yi-Fu, Saridakis, Emmanuel N, Setare, Mohammad R, & Xia, Jun-Qing. (2010). Quintom cosmology: theoretical implications and observations. Physics Reports, 493(1), 1-60.

Caldwell, Robert R. (2002). A phantom menace? Cosmological consequences of a dark energy component with super-negative equation of state. Physics Letters B, 545(1-2), 23-29.

Chae, K-H, Biggs, AD, Blandford, RD, Browne, IWA, De Bruyn, AG, Fassnacht, CD, . . . Koopmans, LVE. (2002). Constraints on cosmological parameters from the analysis of the Cosmic Lens All Sky Survey radio-selected gravitational lens statistics. Physical Review Letters, 89(15), 151301.

Chang, Y-F. (2011). Negative matter, dark matter and theoretical test. International Review of Physics, 5(6), 340-345.

Chang, Y.-F. (2017). Negative matter as unified dark matter and dark energy, and possible tests. Hadronic J, 40(3), 291-308‎.

Chang, Y.-F. (2019). Negative matter as dark matter, and its judgment test and calculation of ratio. International Journal of Modern Applied Physics, 9(1), 1-12.

Chang, Yi-Fang. (1989). New Research of Particle Physics and Relativity. Yi-Fang Chang.

Chang, Yi-Fang. (2002). Development of the Titius-Bode Law and the Extensive Quantum Theory. Physics Essays, 15(2).

Chang, Yi-Fang. (2005). GRT extended for electromagnetic fields: equivalence principle and geometrization. Galilean Electrodynamics, 16(5), 91.

Chang, Yi-Fang. (2007a). Fractal Relativity, Generalized Noether Theorem and New Research of Space-Time. arXiv preprint arXiv:0707.0136.

Chang, Yi-Fang. (2007b). Negative Matter, Repulsion Force, Dark Matter, Phantom and Theoretical Test----Their Relations with Inflation Cosmos and Higgs Mechanism. arXiv preprint arXiv:0705.2908.

Chang, Yi-Fang. (2013). Field Equations of Repulsion Force between Positive-Negative Matter, Inflation Cosmos and Many Worlds. Int. J. Mod. Theoretical Phys, 2, 100-117.

Chang, Yi-Fang. (2014). Astronomy, black hole and cosmology on negative matter, and qualitative analysis theory. Int. J. Mod. Applied Phys, 4(2), 69-82.

Chang, Yi-Fang. (2016). Calabi-Yau Manifolds of Nebula-Galaxies and Their Possible Dynamics, and Gravitational Wave.

Chang, Yi-Fang. (2018). Basic Principles of Physics and Their Applications, and Logical Structure of Quantum Mechanics March 2018 Projects· theoretical physics.

Chang, Yi-Fang. (2020). Unification of Strong-Weak Interactions and Possible Unified Scheme of Four-Interactions (ResearchGate) March 2020 Projects· particle physics.

Chang, Yi-Fang, Elbasset, A, Abdi, F, Lamcharfi, T, Sayouri, S, Omari, LH, . . . Elghazrani, K. (2014). Unified Theories of Gravitational and Electromagnetic Fields in Riemannian Geometry and Higher Dimension. Unified Theories of Gravitational and Electromagnetic Fields in Riemannian Geometry and Higher Dimension, 132.

Chang, Yi-Fang, Grado-Caffaro, MA, Grado-Caffaro, M, Najafi, Malihe, Najafi, Mohammad, Arbabi, Somayeh, . . . Shoorvazi, S. (2013). Extension and complete structure of the special relativity included superluminal and neutrino-photon with mass. International Journal of Modern Theoretical Physics, 2(2), 53-73.

Chevallier, Michel, & Polarski, David. (2001). Accelerating universes with scaling dark matter. International Journal of Modern Physics D, 10(02), 213-223.

Chimento, Luis P, Forte, Mónica, Lazkoz, Ruth, & Richarte, Martin G. (2009). Internal space structure generalization of the quintom cosmological scenario. Physical Review D, 79(4), 043502.

Clowe, Douglas, Bradač, Maruša, Gonzalez, Anthony H, Markevitch, Maxim, Randall, Scott W, Jones, Christine, & Zaritsky, Dennis. (2006). A direct empirical proof of the existence of dark matter. The Astrophysical Journal Letters, 648(2), L109.

Copeland, Edmund J, Sami, Mohammad, & Tsujikawa, Shinji. (2006). Dynamics of dark energy. International Journal of Modern Physics D, 15(11), 1753-1935.

Copi, Craig J, Schramm, David N, & Turner, Michael S. (1995). Big-bang nucleosynthesis and the baryon density of the universe. Science, 267(5195), 192-199.

Das, Sudeep, Sherwin, Blake D, Aguirre, Paula, Appel, John W, Bond, J Richard, Carvalho, C Sofia, . . . Essinger-Hileman, Thomas. (2011). Detection of the power spectrum of cosmic microwave background lensing by the atacama cosmology telescope. Physical Review Letters, 107(2), 021301.

Dirac, PAM. (1958). The principles of quantum mechanics, Oxford Univ. Press, London.

Dirac, Paul Adrien Maurice. (1930). A theory of electrons and protons. Proceedings of the Royal Society of London. Series A, Containing papers of a mathematical and physical character, 126(801), 360-365.

Dodelson, Scott. (2003). Modern cosmology: Elsevier.

Dodelson, Scott, Kinney, William H, & Kolb, Edward W. (1997). Cosmic microwave background measurements can discriminate among inflation models. Physical Review D, 56(6), 3207.

Dubrovin, BA, Fomenko, AT, & Novikov, SP. (1993). Modern geometry-Methods and applications. Part I," 0¥ edition: Springer Verlag, New York.

Einstein, A. (1955). the meaning of Relativity (fifth edi.): Princeton niversity Press, Princeton, NJ.

Elahi, Fatemeh, & Khatibi, Sara. (2019). Multi-component dark matter in a non-Abelian dark sector. Physical Review D, 100(1), 015019.

Feng, Chao-Jun, Li, Xin-Zhou, & Saridakis, Emmanuel N. (2010). Preventing eternality in phantom inflation. Physical Review D, 82(2), 023526.

Flügge, Siegfried. (2012). Practical quantum mechanics: Springer Science & Business Media.

Gentile, Gianfranco, Famaey, Benoit, Zhao, HongSheng, & Salucci, Paolo. (2009). Universality of galactic surface densities within one dark halo scale-length. Nature, 461(7264), 627-628.

Gerhard, Ortwin, & Silk, Joseph. (1996). Baryonic dark halos: A cold gas component? The Astrophysical Journal, 472(1), 34.

Giannini, JA. (2019). Feasibility of Constructing a Unified Positive and Negative Mass Potential. Int. J. Mod. Theoretical Phys, 8, 1-16.

Giannini, Judith. (2019). Fractal Composite Quarks and Leptons with Positive and Negative Mass Components. Int. J. Modern Theo. Physics, 8(1), 41-63.

Gonzalez, JA, & Guzman, FS. (2009). Accretion of phantom scalar field into a black hole. Physical Review D, 79(12), 121501.

Guth, Alan H. (1981). Inflationary universe: A possible solution to the horizon and flatness problems. Physical Review D, 23(2), 347.

Hong, Soon-Tae, Lee, Joohan, Lee, Tae Hoon, & Oh, Phillial. (2008). Higher dimensional cosmological model with a phantom field. Physical Review D, 78(4), 047503.

Hooper, Dan, & Profumo, Stefano. (2007). Dark matter and collider phenomenology of universal extra dimensions. Physics Reports, 453(2-4), 29-115.

Jungman, Gerard, Kamionkowski, Marc, & Griest, Kim. (1996). Supersymmetric dark matter. Physics Reports, 267(5-6), 195-373.

Kahn, FD, & Woltjer, Lodewijk. (1959). Intergalactic Matter and the Galaxy. The Astrophysical Journal, 130, 705.

Kim, Jeong Han, Lane, Samuel D, Lee, Hye-Sung, Lewis, Ian M, & Sullivan, Matthew. (2020). Searching for dark photons with maverick top partners. Physical Review D, 101(3), 035041.

Kravtsov, A. (2010). Advances in Astronomy 2010, 281913 (2010). arXiv preprint arXiv:0906.3295.

La, Daile, & Steinhardt, Paul J. (1989). Erratum:``Extended inflationary cosmology''[Phys. Rev. Lett. 62, 376 (1989)]. PhRvL, 62(9), 1066.

Landau, L, & Lifshitz, E. (1977). Quantum Mechanics (Non-relativistic theory): Oxford: Pergamon Press.

Landau, Lev Davidovich, & Lifshitz, Evgenii Mikhailovich. (1971). The classical theory of fields.

Linde, Andrei. (1994). Hybrid inflation. Physical Review D, 49(2), 748.

Linde, Andrei D. (1982). A new inflationary universe scenario: a possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems. Physics Letters B, 108(6), 389-393.

Linde, Andrei D. (1983). Chaotic inflation. Physics Letters B, 129(3-4), 177-181.

Lucchin, Francesco, & Matarrese, Sabino. (1985). Power-law inflation. Physical Review D, 32(6), 1316.

Mannheim, Philip D. (1992). Conformal gravity and the flatness problem. The Astrophysical Journal, 391, 429-432.

Massey, Richard, Rhodes, Jason, Ellis, Richard, Scoville, Nick, Leauthaud, Alexie, Finoguenov, Alexis, . . . Kneib, Jean-Paul. (2007). Dark matter maps reveal cosmic scaffolding. Nature, 445(7125), 286-290.

McDonald, John. (1994). Gauge singlet scalars as cold dark matter. Physical Review D, 50(6), 3637.

Morris, Michael S, Thorne, Kip S, & Yurtsever, Ulvi. (1988). Wormholes, time machines, and the weak energy condition. Physical Review Letters, 61(13), 1446.

Mortonson, Michael J, Hu, Wayne, & Huterer, Dragan. (2010). Testable dark energy predictions from current data. Physical Review D, 81(6), 063007.

Peebles, P James E, & Ratra, Bharat. (2003). The cosmological constant and dark energy. Reviews of modern physics, 75(2), 559.

Perkins, Donald H. (2009). Particle astrophysics: Oxford University Press.

Perlmutter, Saul, Aldering, G, Della Valle, M, Deustua, S, Ellis, RS, Fabbro, S, . . . Hook, IM. (1998). Discovery of a supernova explosion at half the age of the Universe. Nature, 391(6662), 51-54.

Piao, Yun-Song, & Zhang, Yuan-Zhong. (2004). Phantom inflation and primordial perturbation spectrum. Physical Review D, 70(6), 063513.

Riess, Adam G, Filippenko, Alexei V, Challis, Peter, Clocchiatti, Alejandro, Diercks, Alan, Garnavich, Peter M, . . . Kirshner, Robert P. (1998). Observational evidence from supernovae for an accelerating universe and a cosmological constant. The Astronomical Journal, 116(3), 1009.

Russo, Jorge G. (2004). Exact solution of scalar field cosmology with exponential potentials and transient acceleration. Physics Letters B, 600(3-4), 185-190.

Saridakis, Emmanuel N, & Sushkov, Sergey V. (2010). Quintessence and phantom cosmology with nonminimal derivative coupling. Physical Review D, 81(8), 083510.

Scherrer, Robert J. (2004). Purely kinetic k essence as unified dark matter. Physical review letters, 93(1), 011301.

Scherrer, Robert J, & Sen, AA. (2008). Phantom dark energy models with a nearly flat potential. Physical Review D, 78(6), 067303.

Schuster, Arthur. (1898). Potential Matter.—A Holiday Dream. Nature, 58(1503), 367-367.

Shellard, EPS, & Battye, RA. (1998). Origin of dark matter axions. Physics reports, 307(1-4), 227-234.

Sherwin, Blake D, Dunkley, Joanna, Das, Sudeep, Appel, John W, Bond, J Richard, Carvalho, C Sofia, . . . Fowler, Joseph W. (2011). Evidence for dark energy from the cosmic microwave background alone using the Atacama Cosmology Telescope lensing measurements. Physical Review Letters, 107(2), 021302.

Soleng, Harald H. (1995). Dark matter and non-newtonian gravity from general relativity coupled to a fluid of strings. General Relativity and Gravitation, 27(4), 367-378.

Soszynski, I, Udalski, A, Kubiak, M, Szymanski, M, Pietrzynski, G, Zebrun, K, . . . Wyrzykowski, L. (2004). The Optical Gravitational Lensing Experiment. Small Amplitude Variable Red Giants in the Magellanic Clouds. arXiv preprint astro-ph/0407057.

Tanabashi, Masaharu, Hagiwara, K, Hikasa, K, Nakamura, Katsumasa, Sumino, Y, Takahashi, F, . . . Amsler, Claude. (2018). Review of particle physics. Physical Review D, 98(3), 030001.

Weinberg, Steven. (1989). The cosmological constant problem. Reviews of modern physics, 61(1), 1.

Weinberg, Steven. (2008). Cosmology: Oxford university press.

Yi-Fang, Chang. (1996). Nonlinear nature of gravitational waves. Apeiron, 3(2), 30-32.

Yi-Fang, Chang. (2018). Extensive quantum theory with different quantum constants, and its applications. International Journal of Modern Mathematical Sciences, 16(2), 148-164.

Zhang, Yifang. (1990). Development of Titius-Bode rule and cosmic quantum theory. PBeiO, 16, 16.

Zwicky, Fritz. (1937). On the Masses of Nebulae and of Clusters of Nebulae. The Astrophysical Journal, 86, 217.

 

 

 

 

 

 

Published

2020-12-19

How to Cite

Chang, Y.-F. (2020). Negative Matter as Unified Dark Matter and Dark ‎Energy: Simplest Model, Theory and Nine Tests: Dark Matter and Dark ‎Energy. International Journal of Fundamental Physical Science, 10(4), 40-54. https://doi.org/10.14331/ijfps.2020.330141

Issue

Section

ORIGINAL ARTICLES